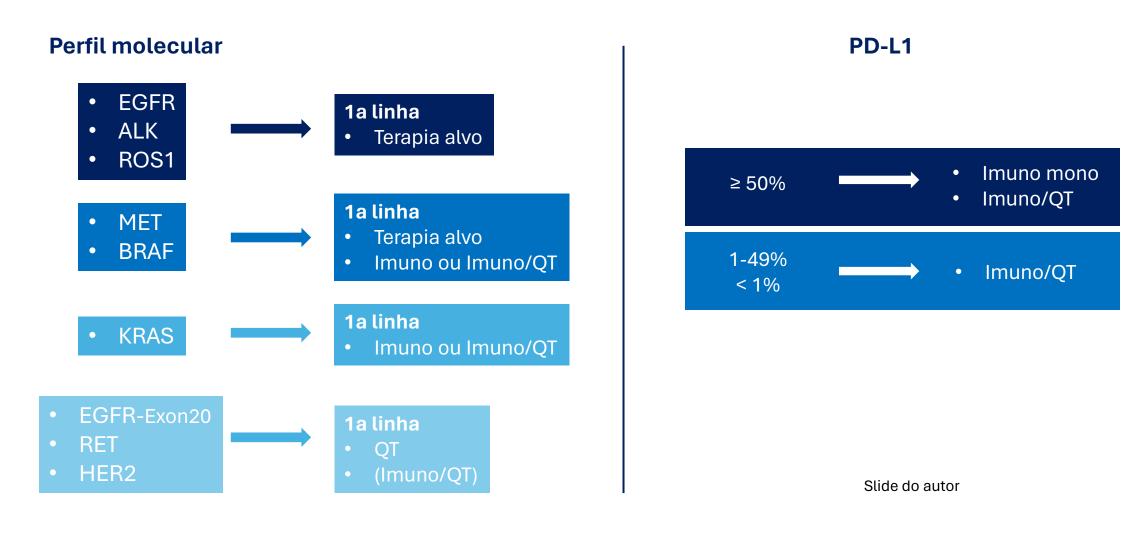
Diagnóstico e tratamento do CPNPC com mutação METex14 skipping

Helano Freitas, MD, MS, PhD
Centro de Referência em Oncologia Torácica
AC Camargo Cancer Center
CRM 102470

Declaração de conflitos de interesse em potencial

- De acordo com a Resolução 1595/2000 do Conselho Federal de Medicina (CFM) e com a RDC 96/2008 da Agência Nacional de Vigilância Sanitária (ANVISA), declaro as seguintes atividades:
 - Pesquisa Clínica: Participação como investigador de ensaios clínicos patrocinados (Roche, Pfizer, MSD, BMS, AZ, Jansen, Lilly, Incyte etc.);
 - Apresentações (*speaker*): MSD, Roche, Lilly, Pfizer, Takeda, BMS, Amgen, AZ, Merck
 - Advisory board e consultorias: MSD, Pfizer, Lilly, Takeda, Roche
 - Patrocínio a congressos: BMS, MSD, Pfizer, Roche, AZ, Takeda, Sanofi
 - Minha esposa trabalha na área de pesquisa clínica da AZ

Seleção de tratamento em pacientes com CPNPC metastático ou recidivado



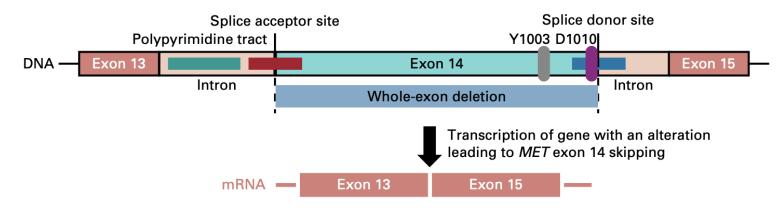
^{*}Considerar perfil molecular (especialmente nos não fumantes e/ou histologia adenoescamosa)

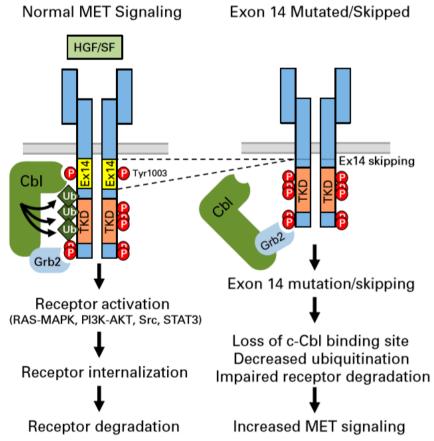
^{*} Cerca de 1-2% dos CPNPC com histologia escamosa tem METex14 skipping (Mazieres et al. Clinical Lung Cancer 2023)

Seleção de tratamento em pacientes com CPNPC metastático ou recidivado

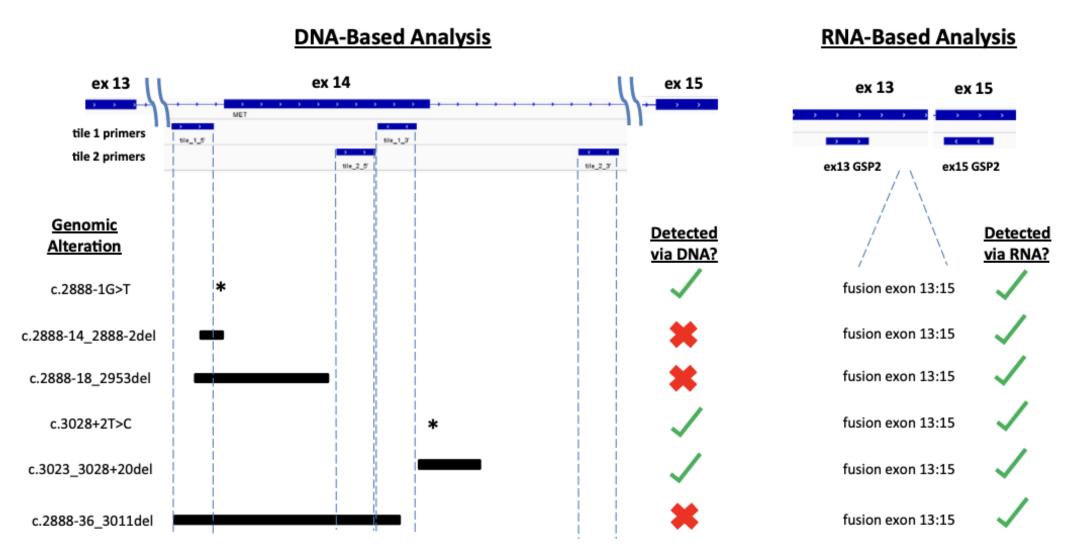
Histologia não escamosa *P40 ou p63 negativo*

Mutações METex14 skipping no CPNPC

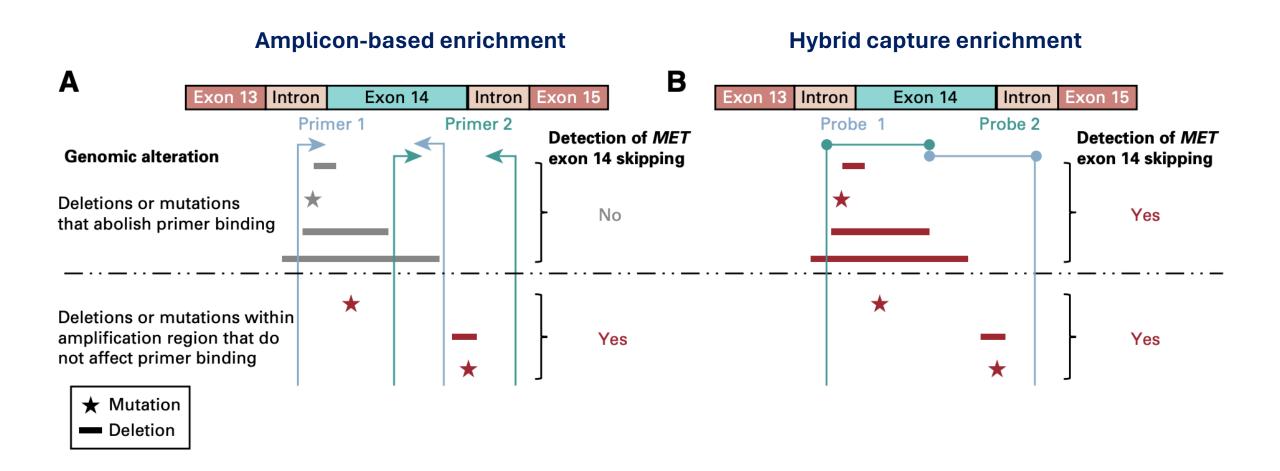

Exon 14 Skipping Mutation


- 2-4% Adenocarcinomas
- 6% Adenoescamosos
- 1-2% Escamosos
- 13-22% Carcinoma sarcomatóide

Liu et al. JCO 2016

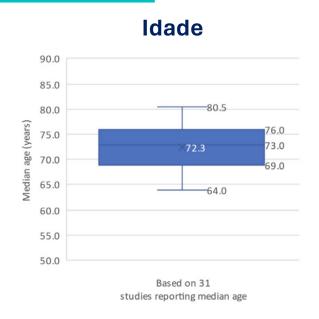

Socinski et al. JCO Precis Oncol 2021.

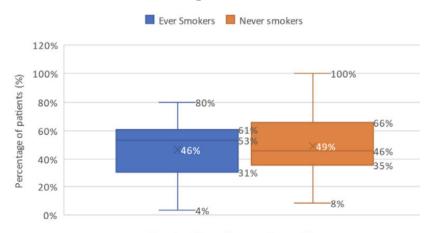
Mazieres et al. Clinical Lung Cancer 2023



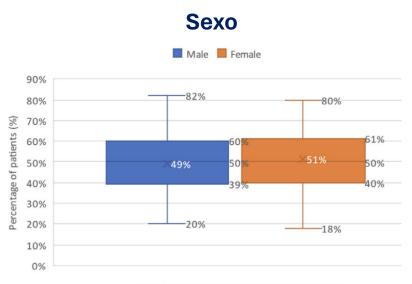
A importância do tipo de teste na detecção da mutação METex14 skipping – DNA x RNA

Deletions that remove significant portions of primer binding sites are predicted to not be detected by the DNA-based assay

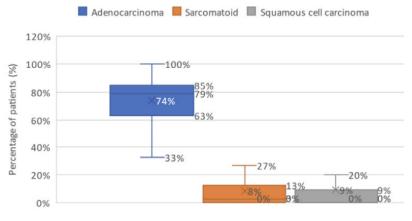

A importância do tipo de teste na detecção da mutação METex14 skipping – Amplicon x Captura híbrida


Testes moleculares comumente utilizados no Brasil

Teste	Sequencia DNA ou RNA?	Tipo de captura		
Oncomine Focus	DNA e RNA	Amplicon-based		
Foundation CDx	DNA	Hybrid capture		
TrueSite Oncology 500	DNA e RNA	Hybrid capture		
FoundationLiquid	DNA	Hybrid capture		
Guardant360	DNA	Hybrid capture		


Características clínicas do CPNPC com mutação METex14 skipping

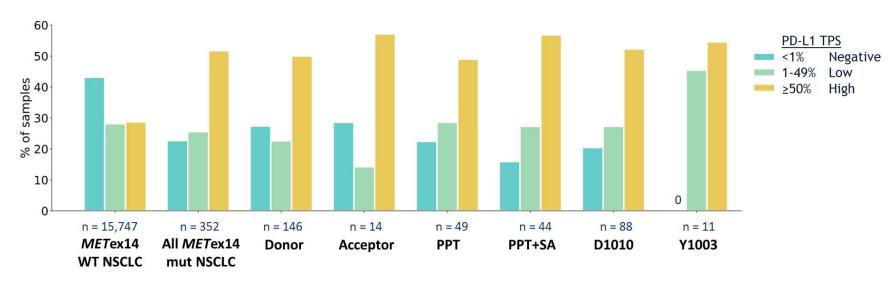
Tabagismo



Based on 22 studies reporting smoking status

Based on 33 studies reporting sex distribution

Histologia



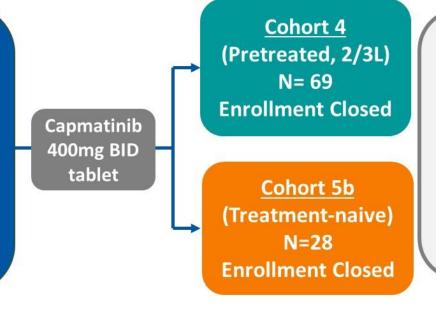
Based on 29 studies reporting histology (ADC = 29, PSC = 21, squamous = 22)

2020**ASCO**


PD-L1 expression across *MET*ex14 NSCLC

- METex14 altered NSCLC is enriched for high (≥50%) PD-L1 positivity vs WT NSCLC (48% vs 29%, p=5.5E-19)
- PD-L1 positivity was relatively similar across METex14 alteration functional site subsets
- For all METex14 NSCLC cases, there was no association of TMB and PD-L1 expression (P=0.76)

METex14 está associado a TMB baixo


TMB distribution across METex14 NSCLC

- METex14-altered NSCLC had significant lower TMB vs METex14-wild-type NSCLC
- TMB of donor site samples was significantly lower than TMB of acceptor, PPT, and D1010 samples

GEOMETRY mono-1: A phase II trial of capmatinib in patients with advanced NSCLC harboring MET exon14 skipping mutation

- Stage IIIB/IV NSCLC
- METΔex14 irrespective of MET GCN by central RT-PCR
- EGFR wt (for L858R and delE19) and ALKnegative
- PS 0-1
- ≥1 measurable lesion (RECIST 1.1)
- Neurologically stable or asymptomatic brain metastases allowed

Primary endpoint

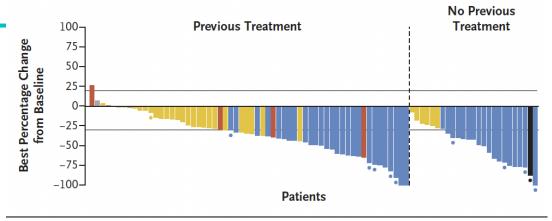
 ORR by blinded independent central review (BIRC)

Secondary endpoints

- Duration of response (DOR)
- Progression-free survival (PFS)
- Overall survival (OS)
- Safety

Study methodology:

- Cohort 4 and 5b are each analyzed separately and have independent statistical hypothesis
- Primary (ORR) and key secondary (DOR) endpoints based on BIRC including 2 parallel independent radiology reviewers (+ additional one for adjudication)
- Efficacy endpoints based on BIRC and investigator assessment per RECIST 1.1


Data cut off: April 15, 2019; median duration of follow-up for DOR: 9.7 months in Cohort 4 and 9.6 months in Cohort 5b Additional data on MET mutated patients will be generated in Cohort 6 (2L; N~30) and Cohort 7 (1L; N~27)

Geometry-mono1 - Capmatinib

Partial response

Stable disease

A Best Response to Capmatinib — MET Exon 14 Skipping Mutation

C Progression-free Survival — MET Exon 14 Skipping Mutation

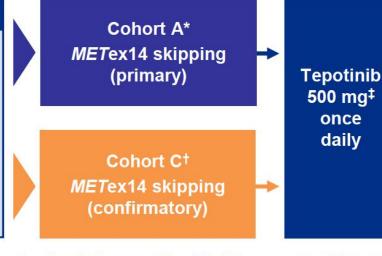
Response	Skipping Mutation		
	Cohort 4 (N = 69)	Cohort 5b (N = 28)	
Best response — no. (%)			
Complete response	0	1 (4)	
Partial response	28 (41)	18 (64)	
Stable disease	25 (36)	7 (25)	
Noncomplete response or nonprogressive disease	1 (1)	1 (4)	
Progressive disease	6 (9)	1 (4)	
Unknown or could not be evaluated	9 (13)	0	
Overall response†			
No. of patients with overall response	28	19	
Percent of patients (95% CI)	41 (29–53)	68 (48–84)	
Disease control:			
No. of patients with disease control	54	27	
Percent of patients (95% CI)	78 (67–87)	96 (82–100	
Duration of response			
No. of events/no. of patients with response	23/28	11/19	
Median duration of response (95% CI) — mo	9.7 (5.6–13.0)	12.6 (5.6–NE)	
Progression-free survival			
Progression or death — no. of patients	60	17	
Median progression-free survival (95% CI) — mo	5.4 (4.2–7.0)	12.4 (8.2–NE)	

Noncomplete response

or nonprogressive disease

NSCIC with MFT Evon 14

Progressive disease



AUGUST 6-9, 2022 | VIENNA, AUSTRIA

Tepotinib is a once daily and highly selective MET TKI approved for METex14 skipping NSCLC based mainly on Cohort A of the multi-cohort Phase II VISION study¹

Key inclusion criteria

- Advanced NSCLC (EGFR/ALK wild-type, all histologies)
- Central confirmation of METex14 skipping by liquid and/or tissue biopsy
- First, second, or third line of therapy

Selected endpoints

Primary:

Objective response by IRC (RECIST v1.1)

Secondary:

DOR, PFS, OS, Safety

Exploratory RANO-BM analysis§:

BOR per RANO-BM (patients with ≥1 evaluable postbaseline tumor assessment): disease control was defined as CR/PR/SD, or non-CR/non-PD

Here, we report the primary analysis (>9-months' follow-up) of the independent confirmatory Cohort C; data cut-off February 20, 2022‡

*Cohort A enrollment began on September 13, 2016. †Cohort C enrolment began on August 8, 2019. ‡500 mg tepotinib hydrochloride hydrate (active ingredient) contains 450 mg tepotinib free base (active moiety).

*Composite of radiographic responses, corticosteroid use, and clinical status, giving a more comprehensive overview of the patient compared with RECIST. For patients with non-measurable lesions only (enhancing and non-enhancing NTLs), non-CR/non-PD was defined as a best objective response of disease control, i.e. persistence of at least one non-progressing NTL. Brain imaging had no mandatory schedule and, as such, data for this analysis were incomplete, and confirmation of response was

once

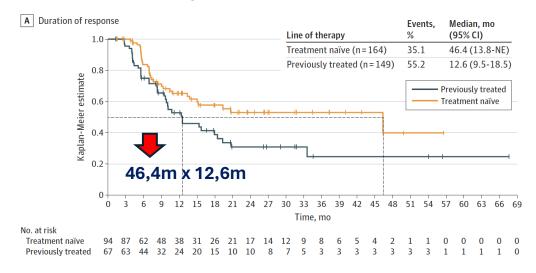
daily

ALK, anaplastic lymphoma kinase; BOR, best overall response; CR, complete response; DOR, duration of response; EGFR, epidermal growth factor receptor; IRC, independent review committee; MET, mesenchymal-epithelial transition factor; METex14, MET exon 14; NSCLC, non-small cell lung cancer; NTL, non-target lesion; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; RANO-BM, Response Assessment in Neuro-Oncology Brain Metastases; SD, stable disease; TKI, tyrosine kinase inhibitor.

Paik PK, et al. N Engl J Med. 2020;383(10):931–943;
 Lin NU, et al. Lancet Oncol. 2015;16(6):e270–e278

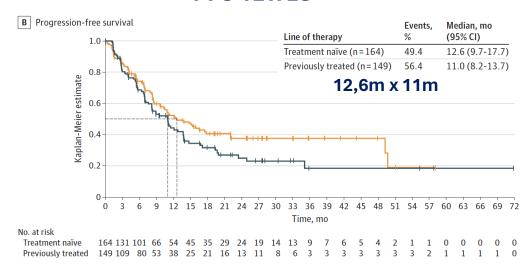
AUGUST 6-9, 2022 | VIENNA, AUSTRIA

Overall efficacy in Cohort C and Cohort A was robust and durable across therapy lines

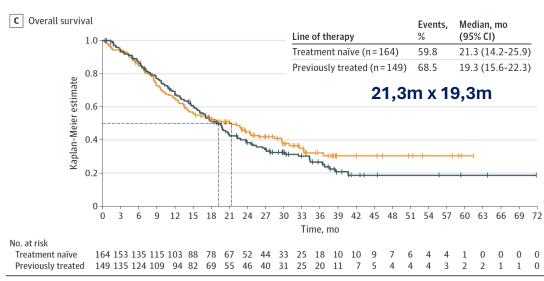

	1L* (T+ and/or L+)	2L+) (T+ and/or L+)	DOR 1L*	2L+		
	Cohort C (n=95)	Cohort C (n=66)	07 - 06 - 05 - 05 - 04 - 03 - 02 - 01 - 01 - 01 - 01 - 01 - 01 - 01	0.7		
ORR, % (95% CI)	60.0 (49.4, 69.9)	47.0 (34.6, 59.7)	0.0	0.0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 4 Patients at risk		
Median DOR, months (95% CI)	ne (13.4, ne)	12.6 (5.1, ne)	PFS 1.0 0.9 0.8 0.7	1.0 0.9 0.8 0.8		
Median PFS, months (95% CI)	15.9 (10.4, ne)	12.1 (6.9, ne)	## 0.6 -	## 0.6 -		
Median OS, months (95% CI)	21.1 (12.7, ne)	18.8 (13.5, ne)	0.1 - 0.0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 Patients at risk Progression free survival (months) Cohort C 95 78 60 34 24 15 10 7 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1 - 0.0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 4 Patients at risk Progression free survival (months) Cohort C 66 49 33 22 14 8 6 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

^{*1}L enrollment began approximately 8 months later than 2L+.

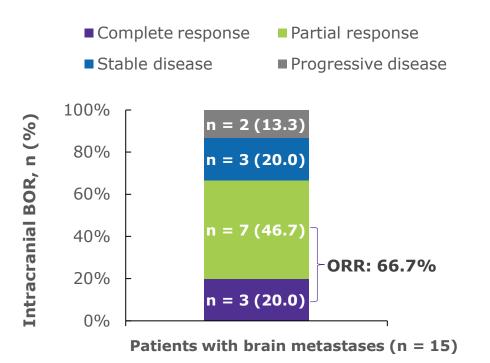
¹L, first line; 2L+, second-or-later line; Cl, confidence interval; DOR, duration of response; L+, *MET*ex14 skipping detected in liquid biopsy; ne, not estimable; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; T+, *MET*ex14 skipping detected in tissue biopsy.


Long-term Follow-up of the VISION Phase 2 Nonrandomized Clinical Trial

Duração de resposta 1L x LS



LS: Linhas subsequentes (2L ou posterior)


PFS 1L x LS

OS 1L x LS

Eficácia intracraniana (RANO-BM) em pacientes com lesões-alvo de metástases cerebrais no início do tratamento.

Patients with brain metastases (n = 15)				
Intracranial ORR, n (%) [95% CI]	Overall (n = 15)	10 (66.7) [38.4, 88.2]		
	Treatment-naïve (n = 10)	6 (60.0) [26.2, 87.8]		
	Previously treated (n = 5)	4 (80.0) [28.4, 99.5]		
Intracranial DOR	Median, months (95% CI)	ne (0.9, ne)		

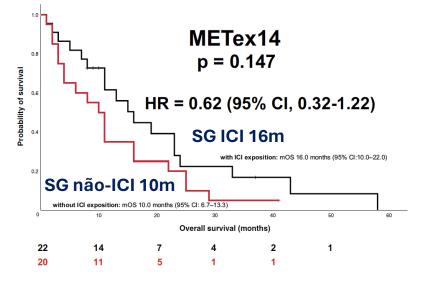
De 15 pacientes com lesões-alvo de metástases cerebrais avaliáveis pelo critério RANO-BM (12 pacientes haviam recebido radioterapia cerebral anteriormente), a taxa de resposta objetiva intracraniana foi de 66,7%.

Toxicidade dos inibidores de MET

Adverse Events	Tepotinibe	Safety Po (N=)		
	All Grades	Grade 1 or 2	Grade 3	Grade 4
		number of pati	ents (percent)	
Any adverse event†	135 (89)	93 (61)	38 (25)	3 (2)
Peripheral edema	96 (63)	85 (56)	11 (7)	0
Nausea	39 (26)	38 (25)	1 (1)	0
Diarrhea	33 (22)	32 (21)	1 (1)	0
Blood creatinine increased	27 (18)	26 (17)	1 (1)	0
Hypoalbuminemia	24 (16)	21 (14)	3 (2)	0
Amylase increased	17 (11)	13 (9)	3 (2)	1 (1)
Lipase increased	13 (9)	9 (6)	4 (3)	0
Asthenia	12 (8)	11 (7)	1 (1)	0
Decreased appetite	12 (8)	11 (7)	1 (1)	0
Pleural effusion	12 (8)	8 (5)	4 (3)	0
Alopecia	12 (8)	12 (8)	0	0
Fatigue	11 (7)	10 (7)	1 (1)	0
Alanine aminotransferase increased	11 (7)	7 (5)	3 (2)	1 (1)
Aspartate aminotransferase increased	10 (7)	7 (5)	2 (1)	1 (1)
Vomiting	9 (6)	9 (6)	0	0
General edema	9 (6)	5 (3)	4 (3)	0
Upper abdominal pain	8 (5)	8 (5)	0	0

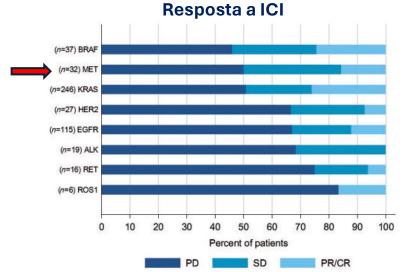
NSCLC	with	MET	Exon	1
Skip	ping	Muta	ation	

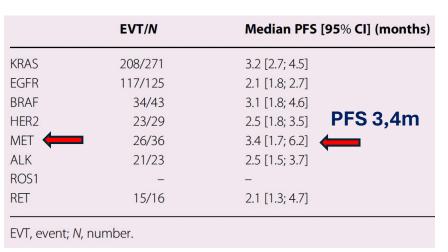
Variable


Capmatinibe

	Cohort 4 (N = 69)		Cohort 5b (N = 28)		Cohort la (N=69)	
	Total	Grade 3 or 4	Total	Grade 3 or 4	Total	Grade 3 or 4
Adverse events						
Any event — no. (%)	68 (99)	52 (75)	28 (100)	21 (75)	67 (97)	48 (70)
Most common events — no. (%)†						
Peripheral edema	37 (54)	10 (14)	21 (75)	3 (11)	34 (49)	5 (7)
Nausea <u>‡</u>	32 (46)	0	13 (46)	0	32 (46)	5 (7)
Vomiting‡	18 (26)	0	7 (25)	0	24 (35)	5 (7)
Blood creatinine increased	23 (33)	0	10 (36)	0	16 (23)	0
Dyspnea	19 (28)	7 (10)	6 (21)	2 (7)	13 (19)	4 (6)
Fatigue	18 (26)	6 (9)	4 (14)	1 (4)	11 (16)	1 (1)
Decreased appetite <u>‡</u>	15 (22)	1 (1)	8 (29)	0	15 (22)	1 (1)
Constipation	10 (14)	2 (3)	4 (14)	0	16 (23)	0
Diarrhea	12 (17)	0	5 (18)	0	19 (28)	1 (1)
Cough	10 (14)	1 (1)	7 (25)	0	9 (13)	1 (1)
Back pain	11 (16)	2 (3)	4 (14)	0	8 (12)	0
Pyrexia	9 (13)	1 (1)	2 (7)	0	10 (14)	0
ALT increased	8 (12)	6 (9)	4 (14)	2 (7)	12 (17)	7 (10)
Asthenia	6 (9)	3 (4)	4 (14)	2 (7)	6 (9)	3 (4)
Pneumonia	7 (10)	4 (6)	2 (7)	0	12 (17)	3 (4)
Weight loss	9 (13)	0	3 (11)	0	7 (10)	1 (1)
Noncardiac chest pain	5 (7)	1 (1)	1 (4)	0	10 (14)	2 (3)

Resposta a imunoterapia no CPNPC com mutação METex14


Imunoterapia em 1L



Kron et al. JTO 2020

PFS of patients treated with immunotherapy (n=21) 1.0 PFS 1,9m 0.8 0.6 0.2 4 6 8 Months since therapy start

No. at risk 21

Mensagens finais

- A mutação METex14 skipping pode ser encontrada em adenocarcinomas, carcinomas sarcomatóides, carcinomas escamosos e carcinomas adenoescamosos de pulmão
- A grande variedade de alterações genômicas relacionadas a METex14 skipping pode tornar difícil a detecção desse tipo de alteração por testes moleculares (falso negativo)
- METex14 tende a ocorrer mais em pacientes idosos e tem incidência semelhante em fumantes e não fumantes
- Tumores com METex14 skipping tendem a apresentar TMB baixo e alta expressão de PD-L1
- As respostas de tumores com METex14 skipping a imunoterapia são bastante heterogêneas (daí minha preferência em usar os inibidores de MET em 1L)
- Os inibidores seletivos de MET, como tepotinibe, tem alta atividade contra METex14 skipping, com TR em torno de 60% em 1L e mediana de PFS em torno de 1 ano; A TR em linhas subsequentes é em torno de 50%, mas a duração de resposta é menor nesse contexto (outra razão para a minha preferência em 1L)

Obrigado pela atenção!

helano.freitas@accamargo.org.br

Centro de Referência em Oncologia Torácica AC Camargo Cancer Center

TEPMETKO[®] (cloridrato de tepotinibe monoidratado) Comprimidos revestidos de 250 mg. Embalagem com 60 comprimidos. Uso oral/adulto. Indicações: indicado o tratamento de pacientes adultos com câncer de pulmão de não-pequenas células avançado (CPNPC), portando alterações em salto no gene do receptor de tirosina guinase MET, no éxon 14 (skipping alterations) (METex14). Contraindicações: Hipersensibilidade ao tepotinibe ou a qualquer um dos excipientes. Advertências e precauções: Doença pulmonar intersticial (DPI)/Pneumonite: casos graves ocorreram em 4 pacientes sendo 1 caso fatal. Pacientes devem ser monitorados quanto a sintomas pulmonares indicativos de reações semelhantes à DPI (ex.: dispneia, tosse, febre). TEPMETKO® deve ser suspenso e os pacientes devem ser imediatamente investigados para diagnóstico alternativo ou etiologia específica da doença pulmonar intersticial. TEPMETKO® deve ser permanentemente descontinuado se a doença pulmonar intersticial for confirmada e o paciente deve ser tratado adequadamente. Aumento de ALT e/ou AST: Foi relatado aumento das enzimas hepáticas (ALT e/ou AST), em sua maioria não graves e de grau baixo. ALT, AST e bilirrubina devem ser monitoradas antes do início do TEPMETKO® e, posteriormente, conforme indicação clínica. Se ocorrerem aumentos de grau 3 ou superior, é recomendada modificação da dose. Interpretação de testes laboratoriais: Tepotinibe ou seu principal metabólito pode levar ao aumento de creatinina pela inibição das proteínas transportadoras tubulares renais OCT 2 e MATE 1 e 2. Estimativas da função renal que dependem da creatinina sérica (depuração de creatinina ou taxa de filtração glomerular estimada) devem ser interpretados com cautela, considerando esse efeito. Gravidez e lactação: devem ser orientadas a evitar engravidar, devendo fazer uso de métodos eficazes de contracepção durante o tratamento com tepotinibe e por pelo menos 1 semana após a última dose de tepotinibe. Não se recomenda a utilização durante a gravidez, a menos que o estado clínico da mulher exija tratamento com tepotinibe. Mulheres lactantes devem ser alertadas para não amamentar durante o tratamento. Fertilidade: O efeito sobre a fertilidade masculina e feminina é desconhecido. Efeitos na habilidade de dirigir e operar máquinas: TEPMETKO[®] não influencia a capacidade de dirigir e operar máquinas. Reações adversas muito comuns para TEPMETKO[®]: edema (principalmente edema periférico), náusea, diarreia, vômito, aumento da creatinina e da ALT, hipoalbuminemia. Interações medicamentosas: Monitorar os efeitos clínicos de substâncias dependentes de gp-P com um índice terapêutico estreito (por exemplo, digoxina), substratos sensíveis a BCRP e metformina. **Posologia:** A dose recomendada de TEPMETKO® é de 500 mg (2 comprimidos) uma vez ao dia com alimentos. O paciente deve administrar o TEPMETKO® aproximadamente no mesmo horário todos os dias. O tratamento deve continuar até a progressão da doença ou toxicidade inaceitável. Se uma dose diária for omitida, ela pode ser tomada assim que lembrada no mesmo dia, a menos que a próxima dose deva ser administrada em 8 horas. Se ocorrer vômito após tomar uma dose de TEPMETKO®, os pacientes devem tomar a próxima dose no horário programado seguinte. Modificação de dose para reações adversas: A redução da dose recomendada de TEPMETKO® para o tratamento das reações adversas é de 250 mg por via oral uma vez ao dia. Cuidados de conservação: Conservar em temperatura ambiente (entre 15°C e 30°C) e conservar na embalagem original para proteger da umidade. M.S. 1.0089.0414. Venda sob prescrição médica.020623.

Contraindicação: Hipersensibilidade ao tepotinibe ou a qualquer um dos excipientes. **Interação medicamentosa:** Monitorar os efeitos clínicos de substâncias dependentes de gp-P com um índice terapêutico estreito (por exemplo, digoxina), substratos sensíveis a BCRP e metformina.

A PERSISTIREM OS SINTOMAS, O MÉDICO DEVERÁ SER CONSULTADO.

Material promocional destinado exclusivamente para profissionais de saúde habilitados para prescrever medicamentos sujeitos à prescrição médica. É proibida a reprodução total ou parcial sem o consentimento expresso da Merck