

CONFERÊNCIA BRASILEIRA DE

CÂNCER DE MAMA

LACOG - GBECAM 2024

Rachel Cossetti

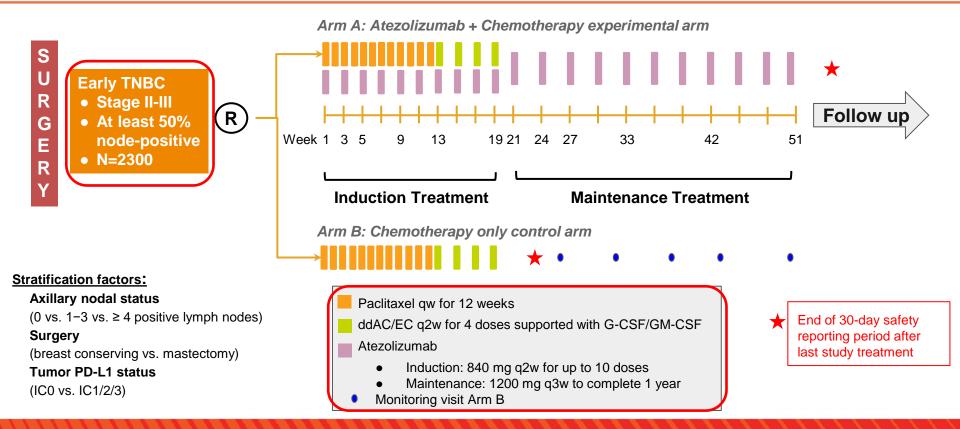
Oncologia D'Or - Hospital do Câncer Aldenora Bello - Clínica Preciore

REALIZAÇÃO

Adding atezolizumab to adjuvant chemotherapy for stage II and III triple-negative breast cancer is unlikely to improve efficacy: interim analysis of the ALEXANDRA/IMpassion030 phase 3 trial

Michail Ignatiadis¹, MD, PhD, Andrew Bailey², Heather McArthur³, MD, PhD Sarra El-Abed⁴, Evandro De Azambuja¹, Otto Metzger⁵, Stephen Y. Chui⁶, Max Dieterich⁷, Thomas Perretti⁷, Guenther Steger⁸, Jacek Jassem⁹, Soo Chin Lee¹⁰, Michaela Higgins¹¹, Jose Zarba¹², Marcus Schmidt¹³, Henry Gomez¹⁴, Angel Guerrero Zotano¹⁵, Luca Moscetti¹⁶, Joanne Chiu¹⁷, Carter DuFrane⁵, Vanessa Honvault¹, Rosa Altarcheh-Xifro⁴, Luciana Molinero⁶, Andrew Ellingson², Elisabetta Munzone¹⁸, Noa Efrat Ben-Baruch¹⁹, Emilio Bajetta²⁰, Shinji Ohno²¹, Seock-Ah Im²², Gustavo Werutsky²³, Einav Nili Gal-Yam²⁴, Xavier Gonzalez Farre²⁵, Ling-Ming Tseng²⁶, William Jacot²⁷, Oleg Gluz²⁸, Zhimin Shao²⁹, Yaroslav Shparyk³⁰, Ivan Sinielnikov³¹, Anastasia Zimina³², Vasiliev Aleksander³³, Esther Shearer-Kang⁶, Eric Winer⁵, Diogo Martins Branco¹, Shona Fielding², David Cameron³⁴, Giuseppe Viale¹⁸, Shigehira Saji³⁵, Richard Gelber^{2,5}, Martine Piccart¹.

¹Institut Bordet, Brussels, Belgium, ²Frontier Science, ³Simmons Cancer Center at UT Southwestern Medical Center, Dallas USA. ⁴Breast International Group, Brussels, Belgium, ⁵Dana-Farber Cancer Institute, Boston , USA, 6Genentech Inc., South San Francisco, CA, USA, ⁷F. Hoffmann-La Roche Ltd, Basel, Switzerland, ⁸Medical University of Vienna, Austria, ⁹Medical University of Gdansk, Poland, ¹⁰National University Hospital Singapore, ¹¹Cancer Trials Ireland, ¹²National University of Tucaman, Argentina, ¹³Comprehensive Cancer Center University Medical Center Mainz, Germany, ¹⁴National Institute of Neoplatic diseases, Lima, Peru, ¹⁵Oncology Institute, Valencia, Spain, ¹⁶Azienda University Hospital, Modena, Italy, ¹⁷Queen Mary Hospital & Gleneagles Hospital Hong Kong, ¹⁸IEO, European Institute of Oncology IRCCS, Milan, Italy, ¹⁹Kaplan Medical Center, Israel, ²⁰Instituto Nationale Tumori, Milan, Italy, ²¹The Cancer Institute Hospital São Lucas PUCRS, Porto Alegre


Brasil, ²⁴Breast Oncology Institute, Sheba MC, Israel, ²⁵International University of Catalonia, Barcelona, Spain, ²⁶Taipei Veterans General Hospital, Taiwan, ²⁷Institut Regional du Cancer, Montpellier, France, ²⁸Breast Center Niederrhein, Mönchengladbach, Germany, ²⁹Fudan University Cancer Institute, Shanghai, China, ³⁰Lviv National Medical University, Ukraine, ³¹The Municipal Enterprise Volyn Regional Medical Oncology Centre of the Volyn Regional Council, Lutsk, Ukraine, ³²Omsk Clinical Oncological Dispensary, Omsk, Russian Federation, ³³Moscow State University of Medicine and Dentistry, Russian Federation, ³⁴The University of Edinburgh, UK, ³⁵Fukushima Medical University, Fukushima, Japan.

Background

- Triple-negative breast cancer (TNBC) is an aggressive subtype and improving its outcome represents an unmet medical need¹.
- TNBC is considered the more immunogenic breast cancer subtype due to higher level of sTILs, higher expression of immunosuppressive genes and the presence of immune activation signatures^{1,2,3}.
- Initial pivotal studies of cancer immunotherapy for early-stage disease (e.g. melanoma) demonstrated clear benefit when treating micrometastatic disease (adjuvant immunotherapy)⁴.
- At the time the Alexandra/IMpassion030 trial was designed, the optimal timing of when to use PD-(L)1 inhibitor in combination with multi-agent chemotherapy in early TNBC was unknown (neoadjuvant vs. adjuvant).
- Atezolizumab plus nab-paclitaxel has been approved by Health Authorities for PD-L1-positive, metastatic TNBC^{5,6}.
- Alexandra/IMpassion030 was designed to investigate the value of adding the anti-PD-L1 inhibitor atezolizumab as adjuvant treatment in TNBC patients receiving standard anthracycline- and taxane- based adjuvant chemotherapy.

¹Bianchini G et al Nat Rev Clin Oncol 2016, ²Loi S et al J Clin Oncol 2013; 31:860-7. ³Ignatiadis M et al J Clin Oncol 2012; 30:1996-2004.⁴Weber J et al NEJM 2017;377:1824-1835, ⁵P Schmid et al, NEJM 2018; 379:2108-2121, ⁶Tecentrig® SmPC, Japanese-PI, South Korean Product Information, Brazilian Healthcare Professional Leaflet

San Antonio Breast Cancer Symposium® December 5-9, 2023 | San Antonio, TX | @SABCSSanAntonio

Endpoints

Primary efficacy endpoint

Invasive Disease-Free Survival (iDFS) in the intent to treat (ITT) population

Secondary efficacy endpoints

iDFS in the PD-L1-positive subpopulation

iDFS in the node-positive subpopulation

iDFS including second primary non-breast invasive cancer

Overall Survival (OS)

Relapse-Free Interval (RFI)

Distant Relapse-Free Interval (DRFI)

Disease-free survival (DFS)

Other endpoints

Patient reported outcomes (PROs)

Safety

Pharmacokinetics

Immunogenicity

Biomarkers/translational research

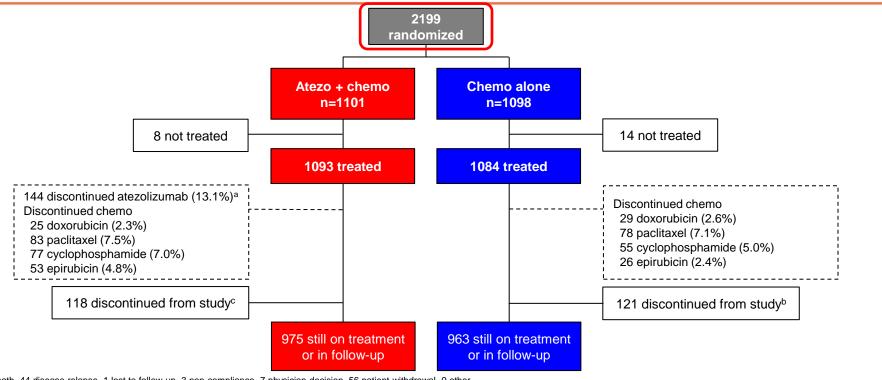
Statistical analysis considerations

Health Authority request for additional interim and a futility analysis

Initial Statistical Analysis Plan:

- 2300 patients and primary endpoint invasive Disease-Free Survival (iDFS)
- One planned interim analysis at 80% information (310 iDFS events)
- Final analyses at 388 iDFS events
 - Two-sided, stratified log-rank test with alpha 0.05, power 80%, hazard ratio 0.75, ITT population

Updated Statistical Analysis Plan*:


- At the time of the SAP amendment 2199 patients had been randomized.
- Two planned interim analyses at 62% and 80% information (242 and 312 iDFS events)
- Futility boundary added at a Hazard Ratio (HR) > 1
- Final analyses at 390 iDFS events
 - Two-sided, stratified log-rank test with alpha
 0.05, power 80%, hazard ratio 0.75, ITT
 population

^{*} Main statistical design considerations, with the addition of one interim and futility analysis, remained the same as for the initial statistical analysis plan

Data which follows is based upon clinical cut-off date of 17 February 2023, extracted from a dataset which was not fully cleaned to meet the Health

Authority timeline requirement to perform the interim analysis that followed the iDMC recommendation to halt recruitment (temporarily).

San Antonio Breast Cancer Symposium® December 5-9, 2023 | San Antonio, TX | @SABCSSanAntonio

^a5 death, 44 disease relapse, 1 lost to follow-up, 3 non-compliance, 7 physician decision, 56 patient withdrawal, 9 other

Analyses based on all randomized patients per intention-to-treat principle

^b49 death, 5 lost to follow-up, 4 physician decision, 63 patient withdrawal

c60 death, 5 lost to follow-up, 3 physician decision, 50 patient withdrawal

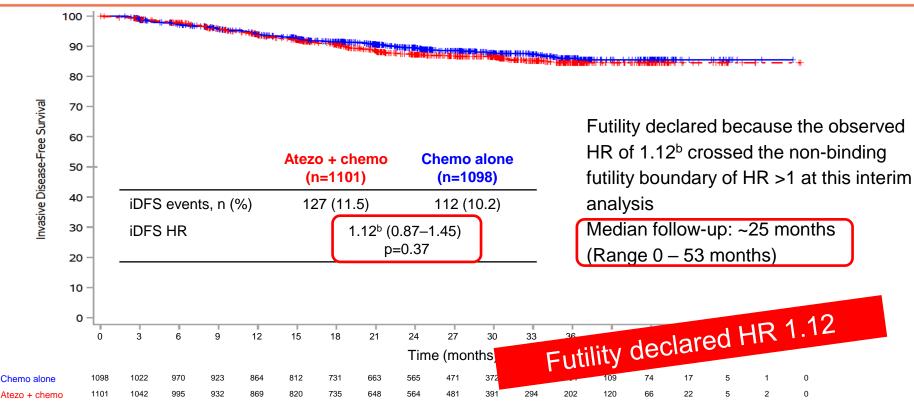
Baseline characteristics, ITT population (1)

Characteristic, n (%)	Atezo + chemo (n=1101)	Chemo alone (n=1098)	Total (N=2199)	
Age (years), median (range)	53 (24–86)	53 (23–79)	53 (23–86)	
Age Group (years)				
<65	916 (83.2)	904 (82.3)	1820 (82.8)	
≥65	185 (16.8)	194 (17.7)	379 (17.2)	
Race				
White	554 (50.3)	564 (51.4)	1118 (50.8)	
Asian	423 (38.4)	401 (36.5)	824 (37.5)	
American Indian or Alaska Native	28 (2.5)	27 (2.5)	55 (2.5)	
Black or African American	8 (0.7%)	2 (0.2)	10 (0.5)	
Other ¹	2 (0.2)	6 (0.5)	8 (0.4)	
Unknown	86 (7.8)	98 (8.9)	184 (8.4)	
ECOG Score at baseline				
0	887 (80.6)	895 (81.5)	1782 (81.0)	
1	214 (19.4)	203 (18.5)	417 (19.0)	

¹ Race category 'Other' includes 'Native Hawaiian or other pacific islander' and 'Multiple'

Characteristic, n (%)	Atezo + chemo (n=1101)	Chemo alone (n=1098)	Total (N=2199)
Histology			
Ductal, NOS	823 (74.9)	793 (72.2)	1616 (73.6)
Lobular	39 (3.5)	54 (4.9)	93 (4.2)
Metaplastic	50 (4.5)	46 (4.2)	96 (4.4)
Other ¹	211 (19.2)	241 (21.9)	452 (20.6)
Histological Grade at Screening			
Well Differentiated	60 (5.5)	75 (6.8)	135 (6.1)
Moderately Differentiated	205 (18.6)	233 (21.2)	438 (19.9)
Poorly Differentiated	686 (62.4)	653 (59.5)	1339 (60.9)
Anaplastic	3 (0.3)	3 (0.3)	6 (0.3)
Unknown	146 (13.3)	134 (12.2)	280 (12.7)

¹ Histological Subtype category 'Other' includes 'Tubular', 'Mucinous', 'Ductal with medullary features' and 'Other'


Characteristic, n (%)	Atezo + chemo (n=1101)	Chemo alone (n=1098)	Total (N=2199)
Primary Tumor Stage			
pT1-pT2	1024 (93.0)	1045 (95.2)	2069 (94.1)
рТ3	71 (6.4)	51 (4.6)	122 (5.5)
Other ²	6 (0.5)	2 (0.2)	8 (0.4)
Axillarv Nodal Status (IxRS)			
0	577 (52.4)	573 (52.2)	1150 (52.3)
1-3	390 (35.4)	390 (35.5)	780 (35.5)
≥4	134 (12.2)	135 (12.3)	269 (12.2)
AJCC Stage at Surgery			
Stage II	935 (84.9)	940 (85.6)	1875 (85.3)
Stage III	161 (14.6)	157 (14.3)	318 (14.5)
Other ¹	5 (0.5)	1 (<0.1)	6 (0.3)

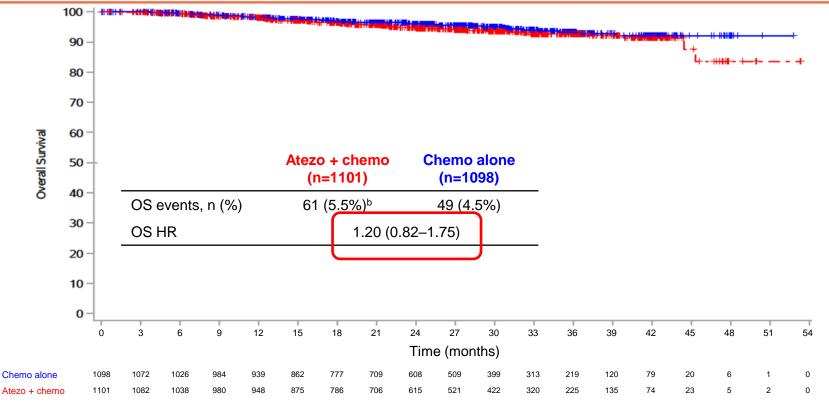
¹ AJCC Stage category 'Other' includes 'Stage I' and missing


Characteristic, n (%)	Atezo + chemo (n=1101)	Chemo alone (n=1098)	Total (N=2199)
PD-L1 Status (IxRS)			
IC 0	316 (28.7)	316 (28.8)	632 (28.7)
IC 1/2/3	785 (71.3)	782 (71.2)	1567 (71.3)
Surgery (IxRS)			
Breast conserving	524 (47.6)	523 (47.6)	1047 (47.6)
Mastectomy	577 (52.4)	575 (52.4)	1152 (52.4)

² Primary Tumor Stage category 'Other' includes 'pT0', 'pTis', 'pT4', 'pT4b' and missing

Primary efficacy endpoint: iDFSa (ITT population)

^aDefined as the interval from randomization until date of first occurrence of an iDFS event, ^bstratified by PD-L1 status, Surgery, and Axillary Nodal Status



iDFS subgroup analysis (ITT Population)

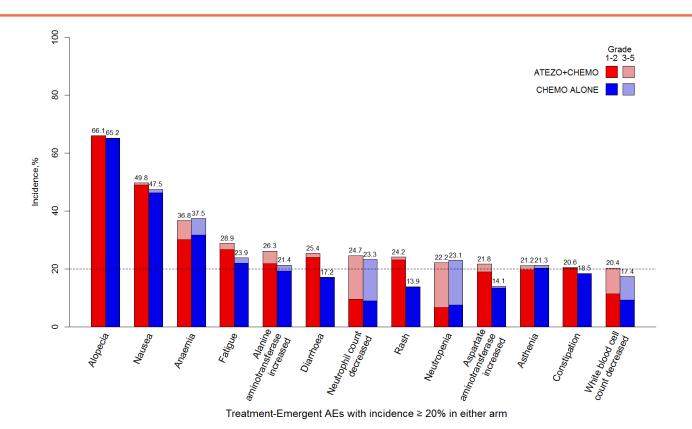
The size of the symbol is proportional to the size of the population in the subgroup.

		+ Che	colizumab Chemo Chemo Alone I=1101) (N=1098)		ne			Atezolizu + Ch	mab Chemo emo Alone etter better	
Baseline Risk Factors	Total n	n	Median (Months)	n	Median (Months)	Hazard Ratio	95% Wald Cl			
All Patients	2199	1101	NE	1098	NE	1.13	(0.87, 1.45))
PD-L1 Status (IxRS) IC 0 IC 1/2/3	632 1567	316 785	NE NE	316 782	NE NE	1.32 1.03	(0.87, 2.01) (0.75, 1.43)			
Primary Tumor Stage at First Diagnosis (Grouped) pT1-pT2 pT3 Other	2069 122 8	1024 71 6	NE NE 23.7	1045 51 2	NE NE NE	1.15 0.81 0.66	(0.88, 1.51) (0.35, 1.86) (0.06, 7.54)	+		
Axillary Nodal Status (IxRS) 0 1-3 >=4	1150 780 269	577 390 134	NE NE NE	573 390 135	NE NE NE	0.81 1.69 1.12	(0.54, 1.22) (1.08, 2.64) (0.68, 1.85)			
AJCC Stage at Surgery (Grouped) Stage II Stage III Other	1875 318 6	935 161 5	NE NE NE	940 157 1	NE NE NE	1.15 1.03 >999.99	(0.85, 1.56) (0.64, 1.65) (0.00, NE)	<		L
Pooled Age Group 1 <65 >=65	1820 379	916 185	NE NE	904 194	NE NE	0.95 2.33	(0.71, 1.26) (1.28, 4.24)			
Baseline ECOG Assessment Score 0 1	1782 417	887 214	NE NE	895 203	NE NE	1.15 1.06	(0.87, 1.51) (0.58, 1.95)			
azard ratios and the associated Wald confider he vertical dashed line indicates the hazard ra			imated using	unstratified	Cox regression	on.		1/100		1 111

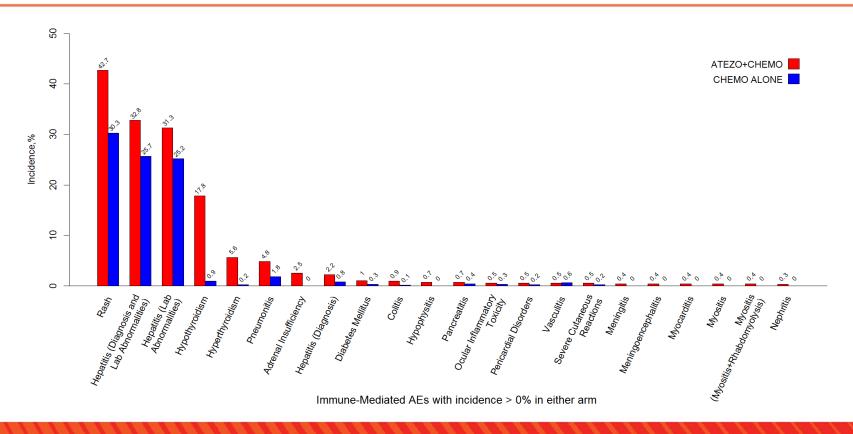
This presentation is the intellectual property of the author/presenter. Contact them at michail.ignatiadis@hubruxelles.be for permission to reprint and/or distribute

^aDefined as the interval between randomization until death from any cause. ^bOne patient in the atezo arm who died 25 Dec 2022 not taken into account (data issue).

Overview of number of patients with at least one AE


AE Overview*, n (%)	Atezo + chemo (n=1093)	Chemo alone (n=1084)	Total (N=2177)	
TEAEs ¹	1090 (99.7)	1073 (99.0)	2163 (99.4)	
TRAEs ² All Grade	1083 (99.1)	1066 (98.3)	2149 (98.7)	
TRAEs Grade 3 - 4	587 (53.7) 472 (43.5)		1059 (48.6)	
TRSAE	198 (18.1)	107 (9.9)	305 (14.0)	
Treatment related Deaths	2 (0.2)	1 (<0.1)	3 (0.1)	
AE leading to any treatment discontinuation	185 (16.9) 60 (5.5)		245 (11.3)	
AEs leading to discontinuation of:				
Atezolizumab	144 (13.2)	0 (0)	144 (6.6)	
Epirubicin	30 (2.7)	12 (1.1)	42 (1.9)	
Doxorubicin	14 (1.3)	17 (1.6)	31 (1.4)	
Cyclophosphamide	43 (3.9)	30 (2.8)	73 (3.4)	
Paclitaxel	54 (4.9)	33 (3.0)	87 (4.0)	

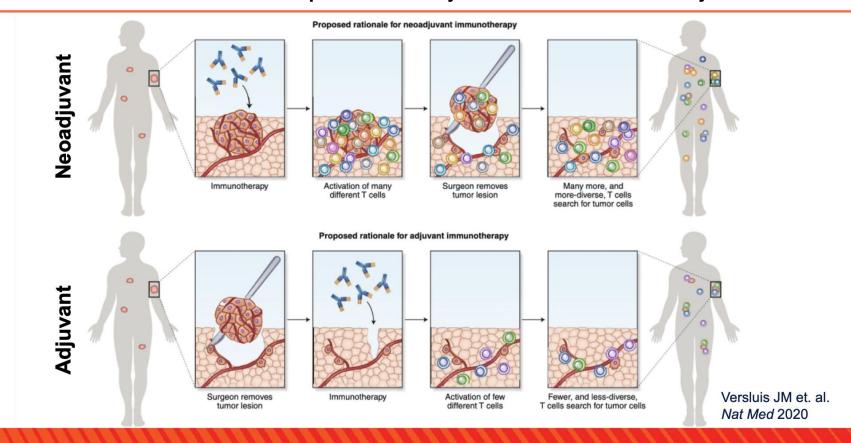
¹TEAE=Treatment Emergent Adverse Event


²TRAE=Treatment Related Adverse Event

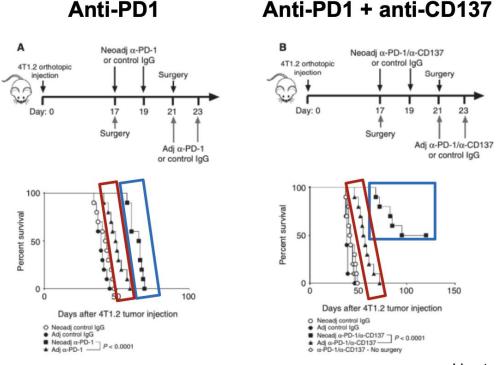
^{*}Safety follow-up period collects all AEs until 30 days after last dose of study treatment therefore atezo + chemo arm had longer safety FU due to the continued atezo dosing during maintenance phase. During the maintenance phase, the chemo arm had ½ the frequency of visits.

TEAEs ≥ 20% and Grading by Arm

Immune-Mediated AEs



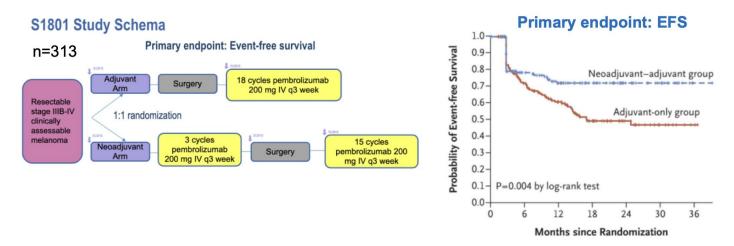
Conclusions


- At the requested interim analysis of the phase 3 ALEXANDRA/IMpassion030 trial, iDFS in ITT population (primary endpoint) crossed the pre-specified futility boundary (HR>1), HR 1.12 [0.87–1.45].
- The primary endpoint together with secondary efficacy endpoints do not support addition of atezolizumab to adjuvant chemotherapy in patients who have undergone primary surgery for early TNBC.
- Safety data were consistent with the known safety profile of atezolizumab in early TNBC (IMpassion031)¹ and
 across indications with numerically more grade 3/4 AEs, SAEs, and AEs in the atezolizumab compared to
 chemotherapy alone arm. Addition of atezolizumab did not compromise delivery of the SoC chemotherapy
 backbone.
- Study data are being updated to a clinical cut-off of 17 November 2023, and results will be published based on the final database. Moreover, the study partners will conduct translational research to address critical questions in this unique dataset.
- The ALEXANDRA/IMpassion030 trial contributes to an improved understanding about the optimal use of immunotherapy in patients with early TNBC.

¹ E A Mittendorf et al, The Lancet 2020; 396: 1090–100

Racional da imunoterapia neoadjuvante versus adjuvante

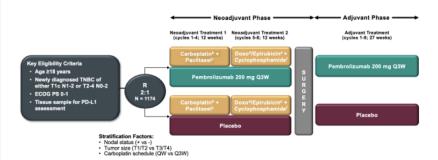
Maior eficácia da imunoterapia neoadjuvante versus adjuvante para erradicar doença micrometástatica em modelo murino de câncer de mama



Liu et. al. Cancer Discovery 2015

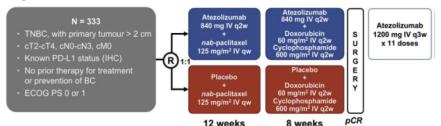
Melhor timing da imunoterapia em melanoma estádio II-III

What about timing of IO administration in other tumor types?


Neoadjuvant + adjuvant vs. adjuvant IO in stage II-III melanoma

^{**} Based on these data, neoadjuvant + adjuvant PD1 inhibitors is becoming a standard approach for stage IIIB-IV resectable melanoma

Estudos fase III imunoterapia neo/adj no CMTN inicial


KEYNOTE-522

pCR rates

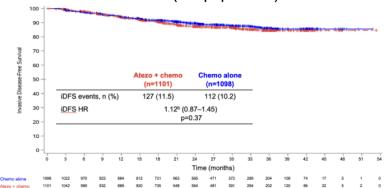
EFS rates

Impassion031

pCR rates

Atezo arm: 57.6%
 Placebo arm: 41.1%
 Δ16.5%
 p=0.0044

EFS rates


Not reported

Schmid et. al. NEJM 2020, ESMO 2023 Mittendorf et. al. Lancet 2020

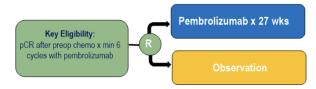
IMpassion030: Adjuvant AC/T +/- atezolizumab for stage II-III TNBC

Primary efficacy endpoint:

iDFS (ITT population)

** Median f/u 25 months: Futility declared because the observed HR of 1.12 in the ITT population crossed the non-binding futility boundary of HR >1 at this interim analysis.

Secondary efficacy endpoints:


- iDFS in PD-L1+ subgroup No difference
- OS (ITT population) No difference

- Dados <u>NÃO</u> favorecem uso do atezolizumab adjuvante em pacientes submetidas à cirurgia inicial
- Racional:
 - Ausência do tumor primário?
 - Agente anti-PD-L1 inferior?
 - Outras variáveis?
- Aguardando dados de outros estudos (S1418 – pembro adj em doença residual pós NACT)

Questões práticas

Precisamos de IO neoadjuvante <u>e</u> adjuvante nas pacientes com TNBC inicial que atingem pCR após NACT?

OptimICE-pCR (NCT05812807)

Stratification Factors:

- Baseline nodal status
- · Receipt of anthracycline chemotherapy; yes vs. no

- Podemos melhorar os resultados das pacientes que não atingem pCR com combinação CT + IO neoadjuvante? Melhores tratamentos adjuvantes?
 - SASCIA (ER+/HER2- and TNBC): Sacituzumab govitecan x 8 vs. TPC (NCT04595565)
 - Optimize RD/ASCENT-05: Sacituzumab govitecan + pembrolizumab x 8 vs. pembrolizumab +/- capecitabine (NCT05633654)
 - Tropion Breast03: Dato-DXd +/- durvalumab vs. capecitabine and/or pembrolizumab (NCT05629585)

