

CONFERÊNCIA BRASILEIRA DE CÂNCER DE MAMA

LACOG - GBECAM 2024

Best of SABCS 2023 – doença avançada

Cristiane Amaral

Oncocenter Teresina – Piaui Mar 2024

REALIZAÇÃO

E PRODUCÃO

Conflito de interesses Resolução CFM nº 1595/2000, 18/05/2000 RDC ANVISA nº 102,30/11/2000

Sem conflitos

OFFICIAL

MONARCH 3: Final overall survival results of abemaciclib plus a nonsteroidal aromatase inhibitor as first-line therapy for HR+, HER2- advanced breast cancer

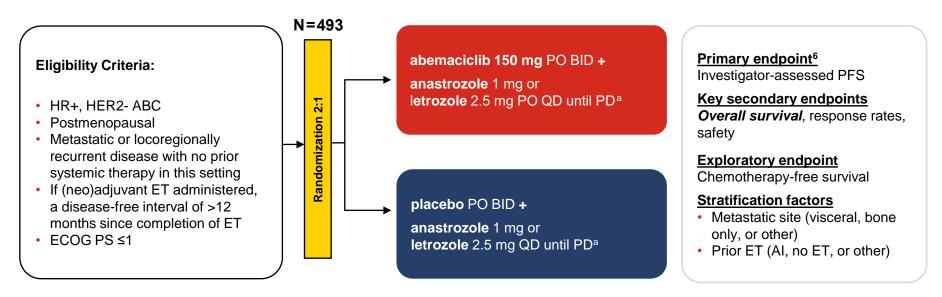
<u>Matthew P Goetz¹</u>, Masakazu Toi², Jens Huober³, Joohyuk Sohn⁴, Oliver Trédan⁵, In Hae Park⁶, Mario Campone⁷, Shin-Cheh Chen⁸, Luis Manuel Manso⁹, Shani Paluch-Shimon¹⁰, Orit C. Freedman¹¹, Joyce O'Shaughnessy¹², Xavier Pivot¹³, Sara M Tolaney¹⁴, Sara Hurvitz¹⁵, Antonio Llombart¹⁶, Valérie André¹⁷, Abhijoy Saha¹⁷, Gertjan van Hal¹⁷, Ashwin Shahir¹⁷, Hiroji Iwata¹⁸, Stephen RD Johnston¹⁹

¹Department of Oncology, Mayo Clinic, Rochester, MN, USA; ²Kyoto University, Kyoto, Japan; ³University of Ulm, Ulm, Germany; ⁴Yonsei Cancer Center, Seoul, Korea; ⁵Centre Léon Bérard, Lyon, France; ⁸National Cancer Center, Goyangsi, Korea; ⁷Institut de Cancérologie de l'Ouest, Angers, France; ⁸Chang Gung University Medical College, Taipei, Taiwan; ⁹Hospital Universitario 12 de Octubre, Madrid, Spain; ¹⁰Hadassah University Hospital & Faculty of Medicine Hebrew University, Jerusalem, Israel; ¹¹Durham Regional Cancer Center, Ontario, Canada; ¹²Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, TX, USA; ¹³Centre Paul Strauss, INSERM 110, Strasbourg, France; ¹⁴Department of Medicine, Concer Institute, Boston, MA, USA; ¹⁵Department of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, USA; ¹⁶Hospital Arnau de Vilanova, FISABIO, Valencia, Spain; ¹⁷Eli Lilly, Indianapolis, IN, USA; ¹⁸Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan; ¹⁹Breast Unit, The Royal Marsden NHS Foundation Trust, London, UK

Background

- Abemaciclib is an oral, potent, cyclin-dependent kinase (CDK) 4/6 inhibitor with greater selectivity for CDK4 than CDK6 which allows continuous dosing due to less myelosuppression¹
- Abemaciclib is approved both for high-risk early breast cancer as well as advanced breast cancer (ABC) in the first- and second-line setting²
- In MONARCH 2, the addition of abemaciclib to fulvestrant significantly improved both progression-free survival (PFS) and overall survival (OS) in patients with HR+, HER2- ABC with disease progression on prior endocrine therapy (ET)^{3,4}
- In MONARCH 3, the addition of abemaciclib to a nonsteroidal aromatase inhibitor (NSAI) resulted in a significant improvement in PFS (HR, 0.540; 95% CI, 0.418-0.698; p=0.000002) as initial therapy in HR+, HER2- ABC⁵
 - At the second interim OS analysis (~252 events, at 5.8 years follow-up), a numerically favorable median OS difference (12.6 months) was observed (HR, 0.754; 95% CI, 0.584-0.974; p=0.0301, non-significant)
- Here, we present the prespecified final OS results for MONARCH 3

¹Torres-Guzman R, et al. *J Clin Oncol.* 2021;39.15_suppl.e2506 ²Abemaciclib [package insert]. Indianapolis, IN; Eli Lilly and Company; 2023 ³Sledge GW, et al. *JAMA Oncol.* 2020;6(1):116-124 ⁴Sledge GW, et al. *J Clin Oncol.* 2017;35(25):2875-2884 ⁵Johnston S, et al. *NPJ Breast Cancer.* 2019;5:5



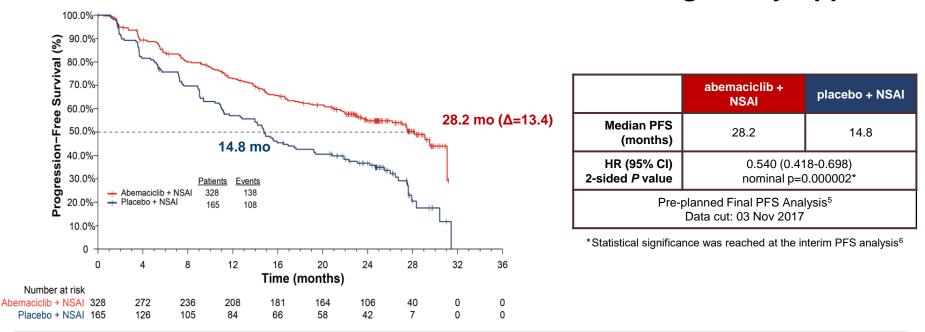
San Antonio Breast Cancer Symposium®, December 5-9, 2023

MONARCH 3 Study Design

MONARCH 3 enrolled from November 2014 to November 2015 in 158 centers from 22 countries

^aper physician's choice: 79.1% received letrozole, 19.9% received anastrozole.

⁶Goetz MP, et al. *J Clin Oncol.* 2017;35(32):3638-3646


OFFICIAL

Robust PFS Benefit in MONARCH 3 Led to Global Regulatory Approval

At the final PFS data cut with a median follow-up of 26.7 months, PFS was prolonged by a median 13.4 months in patients receiving abemaciclib. At that time, OS was immature with 29.5% events observed across both arms.

⁵Johnston S, et al. *NPJ Breast Cancer*. 2019;5:5 ⁶Goetz M, et al. *J Clin Oncol*. 2017;35(32):3638-3646

APOID

Instituto Proieto

REALIZAÇÃO COOPERATIVE OF COUPERATIVE OF

Statistical Analysis Plan for OS

Preplanned Analysis Points	Planned Number of Events	Informatio n Fraction	Data Cut	Median Follow-up	% Patients on Treatment by Arm
OS Interim 1 (IA1)	~189 events in the ITT	0.6	03 Feb 2020	4.5 years	18.6% abemaciclib arm8.5% placebo arm
OS Interim 2 (IA2)	~252 events in the ITT	0.8	02 Jul 2021	5.8 years	12.5% abemaciclib arm3.0% placebo arm
Final OS	~315 events in the ITT	1	29 Sep 2023	8.1 years	7.0% abemaciclib arm3.0% placebo arm

- The family-wise type I error was controlled at 0.05 (2-sided), with a gate-keeping strategy between PFS and OS. OS only tested inferentially for significance if PFS significant.
- The pre-specified OS analyses were performed using a stratified log-rank test.
- Alpha was split according to graphical testing procedure between the ITT population and the subgroup with visceral disease (sVD) to enable testing in both populations.
- For OS, the cumulative 2-sided type I error of 0.05 was maintained using the Lan-Demets method with the O'Brien-Fleming type α-spending function to account for multiplicity of interim and final analyses.

OS in the ITT Population

	abemaciclib + NSAI placebo + NS		
Median OS (months)	66.8 53.7		
HR (95% CI) 2-sided <i>P</i> value	0.804 (0.637-1.015) p=0.0664*		
Final OS Analysis Data cut: 29 Sep 2023			

*p-value did not reach threshold (0.034) for statistical significance at this final analysis

Abemaciclib in combination with a NSAI resulted in longer OS compared to NSAI alone; however, statistical significance was not reached. The observed improvement in median OS was 13.1 months.

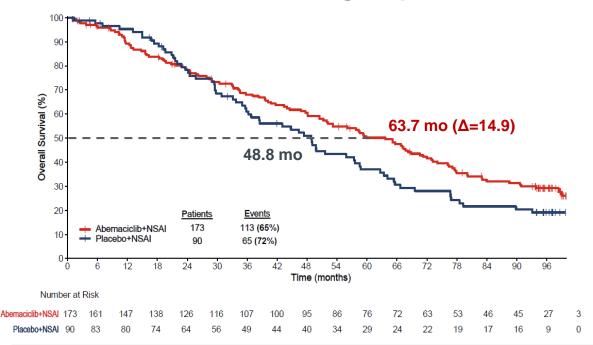
APOID

San Antonio Breast Cancer Symposium®, December 5-9, 2023

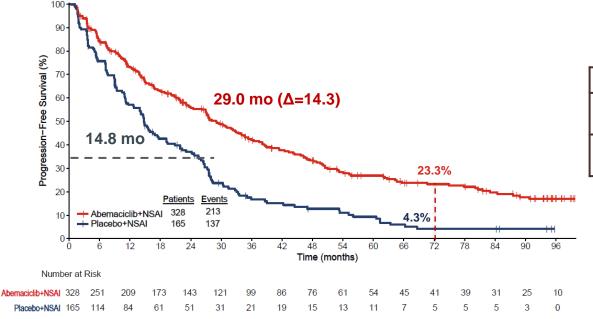
OS Subgroup Analysis

	N	Events	HR (95% CI)	Interaction p-value
Nature of Disease				1271220
Visceral	263	178 🛏	0.755 (0.556, 1.026)	0.298
Bone only	109	62	0.596 (0.360, 0.987)	
Other	121	74	1.042 (0.633, 1.716)	
Endocrine Therapy				0.205
Prior aromatase inhibitor therapy	135	88 +	0.565 (0.370, 0.863)	0.205
Other prior endocrine therapy	96	62	0.942 (0.548, 1.619)	
No prior endocrine therapy	262	164 🛏	0.873 (0.634, 1.202)	
Disease Setting				0.811
De novo metastatic disease	196	124	0.747 (0.517, 1.079)	
Metastatic recurrent disease	281	182 -	• 0.791 (0.585, 1.069)	
Number of Organs at Baseline				
3+	229	161 🛏	0.857 (0.620, 1.186)	0.436
2	119	72	0.856 (0.531, 1.380)	
1	142	80 , 🔶	0.608 (0.388, 0.952)	
Age			i	
<65	271	167 🛏	0.813 (0.592, 1.118)	0.737
>=65	222	147 🛏	0.751 (0.539, 1.049)	
Race				
Caucasian	288	195 🛏	0.840 (0.629, 1.122)	0.444
Asian	148	79 🛏 🔶	0.678 (0.426, 1.080)	
Progesterone Receptor Status				0.033
Negative	106	75	0.498 (0.314, 0.788)	0.035
Positive	383	236	0.886 (0.678, 1.159)	
Baseline ECOG PS				
1	197	138 🛏 🖊	0.721 (0.507, 1.026)	0.656
0	296	176 🛏	0.801 (0.591, 1.086)	
		0.25 0.5 0.	75 1	
		Eavors abemaciclib	Favors placebo	

Consistent OS effect size observed across subgroups


OFFICIAL

OS in the Subgroup with Visceral Disease (sVD)


	abemaciclib + NSAI	placebo + NSAI
Median OS (months)	63.7	48.8
HR (95% CI) 2-sided <i>P</i> value	0.758 (0.558-1.030) p=0.0757*	

 $^{*}\text{p-value}$ did not reach threshold (0.009) for statistical significance at this final analysis

Abemaciclib in combination with a NSAI resulted in longer OS compared to NSAI alone in the sVD; however, statistical significance was not reached. The observed improvement in median OS was 14.9 months.

Updated PFS in the ITT Population

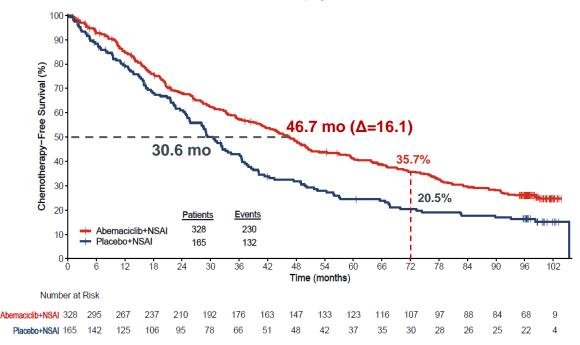
	abemaciclib + NSAI	placebo + NSAI	
Median PFS (months)	29.0	14.8	
HR (95% CI) 2-sided <i>P</i> value	0.535 (0.429-0.668) nominal p=<0.0001*		

*statistical significance was reached at the interim PFS analysis⁵

The addition of abemaciclib to NSAI resulted in a 14.3-month improvement in median PFS with continued separation of the curves at longer follow-up.

⁵Goetz MP, et al. *J Clin Oncol.* 2017;35(32):3638-3646

CONFERÊNCIA BRASILEIRA DE



Instituto Projeto

Chemotherapy-Free Survival in the ITT Population

	abemaciclib + NSAI	placebo + NSAI	
Median CFS (months)	46.7	30.6	
HR (95% CI) 2-sided <i>P</i> value	0.693 (0.557-0.863) nominal p=0.0010		

Chemotherapy-free survival defined as the time to the initiation of subsequent chemotherapy or death from any cause, whichever was earlier

The addition of abemaciclib to NSAI deferred the initiation of chemotherapy, with a 16.1-month improvement in median chemotherapy-free survival.'

OFFICIAL

Instituto Projeto

Post-Discontinuation Therapy

Parameter, n (%)*	abemaciclib + NSAI N=328	placebo + NSAI N=165
Patients who received subsequent systemic therapy	234 (71)	142 (86)
Endocrine therapy	196 (60)	121 (73)
Chemotherapy	136 (41)	102 (62)
Targeted agent therapy	94 (29)	80 (48)
Other	39 (12)	29 (18)
Patients who received a CDK4/6 inhibitor in any subsequent line	38 (12)	52 (32)
Palbociclib	25 (8)	41 (25)
Abemaciclib	10 (3)	7 (4)
Palbociclib + abemaciclib	2 (<1)	2 (1)
Ribociclib	1 (<1)	2 (1)

* Denominator used to calculate % corresponds to ITT population. 284 (86.6%) in the abemaciclib arm and 154 (93.3%) in the placebo arm entered the post-treatment discontinuation follow-up.

During follow-up, many patients received additional therapies post-progression which can impact OS.

Long-Term Safety of Abemaciclib

	abemaciclib + NSAI N=327		placebo + NSAl N=161	
TEAEs ≥30% in abemaciclib arm, n (%)	Any grade	Grade ≥3	Any grade	Grade ≥3
Any	323 (99)	227 (69)	152 (94)	46 (29)
Diarrhea	273 (83)	32 (10)	55 (34)	2 (1)
Neutropenia	153 (47)	90 (28)	3 (2)	2 (1)
Fatigue	144 (44)	7 (2)	58 (36)	0
Nausea	137 (42)	4 (1)	37 (23)	2 (1)
Anemia	115 (35)	31 (9)	16 (10)	2 (1)
Abdominal pain	108 (33)	6 (2)	27 (17)	2 (1)
Vomiting	106 (32)	5 (2)	24 (15)	4 (2)

No new safety signals were observed with long-term use of abemaciclib.

OFFICIAL

Conclusions

- With a median follow-up of 8.1 years, abemaciclib in combination with a NSAI resulted in numerically longer OS compared to NSAI alone; however, statistical significance was not reached
 - Clinically meaningful improvement in median OS: 13.1 months (66.8 vs 53.7 months) in the ITT and 14.9 months (63.7 vs 48.8 months) in the subgroup with visceral disease
- The previously demonstrated PFS benefit persists, with substantial differences well beyond 5 years
 - ✓ Median PFS improvement: 14.3 months

CONFERÊNCIA BRASILEIRA DE

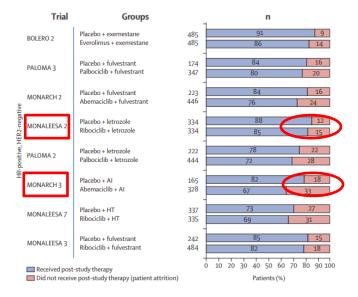
GBECAM 2024

- ✓ 6-year PFS rates: 23.3% vs 4.3% for abemaciclib vs placebo
- Abemaciclib delayed subsequent receipt of chemotherapy (median improvement of 16.1 months)
- No new safety concerns were observed with prolonged exposure to abemaciclib
- These results continue to support the use of abemaciclib in combination with NSAI as first-line therapy in HR+, HER2- ABC and are consistent with results previously shown

Possíveis motivos

• n menor/randomização 2:1

Table 1. Possible advantages and disadvantages of utilizing an unequal allocation in a randomized control trial (i.e. having more participants in an experimental arm of a trial than a control arm, usually) in comparison to using equal allocation are outlined. Considerations include cost, power, flexibility, and more


Advantages	Disadvantages
One arm is cheaper than the other	Often the placebo/control arm is cheaper
Increased for safety data	Decreased for efficacy data
Allows for different dose regimens, useful in early phase trials	Increase in sample size due to decreased efficacy power
Learning curve effect is minimized	Exposure to novel risks related to intervention
Patients more likely to participate if chance of being in the experimental arm is higher	Scientifically, no evidence that the experimental arm is better than the control yet and therefore may violate clinical equipoise.
Researchers may want to provide a higher chance of experimental treatment to the majority of participants	More participants may experience previously unknown adverse effects from experimental arm
If high drop-out rate expected in experimental arm, larger allocation allows for greater power in the intention-to-treat analysis	If high drop-out rate expected in control arm, smaller allocation results in reduced power in a per-protocol analysis
	One arm is cheaper than the other Increased for safety data Allows for different dose regimens, useful in early phase trials Learning curve effect is minimized Patients more likely to participate if chance of being in the experimental arm is higher Researchers may want to provide a higher chance of experimental treatment to the majority of participants If high drop-out rate expected in experimental arm, larger allocation allows for

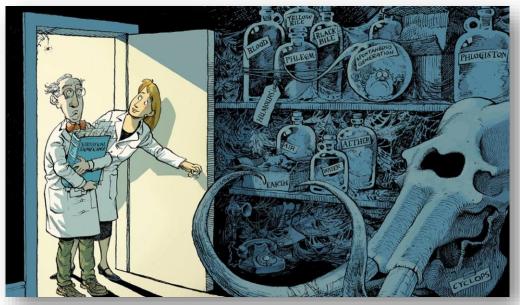
Am J Cancer Res 2021;11(7):3735-3741

Possíveis motivos

• Tratamentos subsequentes

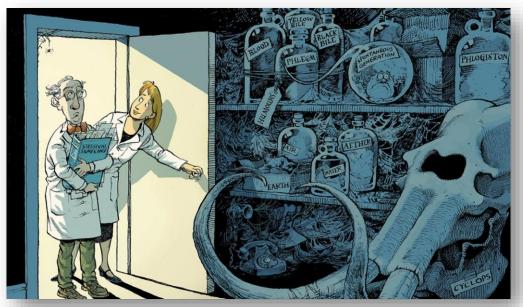
OFFICIAL

Lancet Oncol, vol 21 Jan 2020



"O valor de p nunca pretendeu ser um substituto para o radiocínio cinetífico." Ron Wassertein

Ilustration by DAVID PARKINS



OFFICIAL

"O valor de p nunca pretendeu ser um substituto para o radiocínio cinetífico." Ron Wassertein

Obrigada!

Ilustration by DAVID PARKINS

OFFICIAL

