

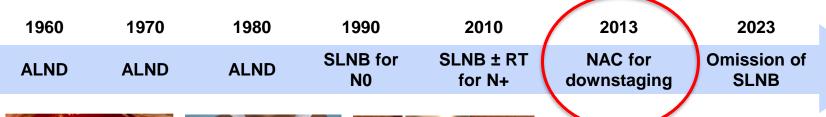
Sentinel lymph node biopsy following neoadjuvant chemotherapy for initially node-positive breast cancer: what have we learned? CONFERÊNCIA BRASILEIRA DE

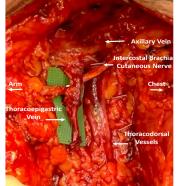
CÂNCER DE MAMA

LACOG - GBECAM 2024

Presenter: Andrea V. Barrio, MD Associate Attending, Breast Service, Department of Surgery Memorial Sloan Kettering Cancer Center

REALIZAÇÃO





Disclosures

Speaking honorarium Novartis

Evolution of Axillary Management Over Time

Shift towards less extensive axillary surgery driven by desire to reduce morbidity and an understanding that tumor biology determines prognosis and dictates treatment decisions

Axillary Management after NAC in 2024

Clinical controversies

- Staging the axilla cN+ patients after NAC: <u>TAD or SLNB</u>?
- What is the optimal SLNB technique?
- 3. Do patients with residual disease in SLNs after NAC need ALND?
- 4. Can SLNB be done in patients with LABC after NAC?

SLNB Feasibility in cN+ Patients After NAC

- 4 prospective, multi-institutional trials
- Primarily included cT1-3N1 patients
- SLNB → back-up ALND

	ACOSOG Z1071	SN FNAC	SENTINA	GANEA 2
n	689	153	592 (cN+)	307
cTN	cT0-4 N1/N2	cT0-3 N1/N2	cN0/N1/N2	pN1*
IR	92.7%	87.6%	80.1%	79.5%
FNR (Overall)	12.6%	13.3%	14.2%	11.9%

The use of dual tracer and removal of ≥ 3 SLNs resulted in FNR < 10%

Additional Methods to Decrease the FNR: Retrieving the Clipped Node

Clip can be placed in node at time of initial node biopsy, and can be targeted for retrieval at time of SLNB post-NAC

Study	n	FNR
ACOSOG Z1071		
Clip in SLN	107	6.8%

Clipped node not an SLN up to 23% of the time, likely related to suboptimal SLN sampling

Targeted axillary dissection (TAD) vs SLNB: False-negative rate

TAD=SLNB + retrieval of clipped node

SLNB with retrieval of ≥ 3 **SLNs**

 $\frac{MD \text{ Anderson}}{N = 85 \text{ TAD/ALND}}$

FNR 2%

SenTa

Prospective multicenter study

N = 77 TAD/ALND

FNR 4.3%

ACOSOG Z1071 N = 388 ≥ 3 SLNs retrieved FNR = 9.1%

Meta-analysis 13 studies

N = 1921 cN+ patients

SLNB/ALND

FNR 4% (0-9%) (≥ 3 SLNs)

Targeted axillary dissection (TAD) vs SLNB: Technical Challenges

TAD=SLNB + retrieval of clipped node

- Additional localization procedure required
- 2. Additional cost
- 3. Failure to visualize clip by sonography post-NAC (~ 20%)
- 4. Failure to retrieve clipped node (7-30%), resulting in unnecessary ALND

SLNB with retrieval of ≥ 3 SLNs

- 1. Wide variation in frequency of identifying ≥ 3 SLNs (34-93%)
- 2. Use of dual mapping preferred (to increase identification rate), which may increase cost

Kuemmel S, Ann of Surg 2022; Diego E, Ann Surg Oncol 2016; Hartmann S, Eur J Surg Oncol 2018; Boughey J, JAMA 2013; Kuehn T, Lancet Oncol 2013; Montagna G, Ann Surg Oncol 2020; Laws A, Ann Surg Oncol 2019

Is Dual Tracer Mapping Always Needed for SLNB in Initially N+ patients after NAC?

FNR 16-20% with single tracer vs 9-11% with dual tracer mapping Resource constraints may limit availability of dual tracer

Fortaleza General Hospital

Feasibility of blue dye alone for SLNB after NAC

N = 100 cN+ → ycN0 SLNB blue dye alone

Identification rate 96%

Among ypN0 patients (n = 70), ≥3 SLNs detected in 78%

Median follow-up 36 months

No axillary recurrences

Nodal Recurrence Rates Are Low in cN+/ypN0 Patients Treated with SLNB Alone After NAC

Study	n	Inclusion	Median follow-up	% Nodal recurrence
European Institute of Oncology (2020)	123	cN1/N2	110 months	1.6%
Istituto Nazionale dei Tumori (2020)	81	cN1	87 months	0%
Mayo Clinic (2020)	159	cN1/N2/N3	34 months	0.9%
McGill University (2021)	58	cN1/N2	36 months	0%
NEOSENTI-TURK (2021)	211	cN1/N2/N3	36 months	0%
MSKCC (2021)	234	cN1	40 months	0.4%
OPBC-04 (2022)	1144	cN1/2/3	42 months	1%

Kahler-Ribeiro-Fontana S, Eur J Surg Oncol 2020; Martelli G, Ann Surg 2020; Piltin M, Ann Surg Oncol 2020; Wong S, Ann Surg Oncol 2021; Cabioglu N, Eur J Surg Onc 2021; Barrio AV JAMA Oncol 2021; Montagna G, JAMA Oncol *in press*

Nodal Recurrence Rates Are Low in cN+/ypN0 Patients Treated with SLNB Alone After NAC

Study	n	Inclusion	Median follow-up	% Nodal recurrence
European Institute of Oncology (2020)	123	cN1/N2	110 months	1.6%
Istituto Nazionale dei Tumori (2020)	81	cN1	87 months	0%
Mayo Clinic (2020)	159	cN1/N2/N3	34 months	0.9%
McGill University (2021)	58	cN1/N2	36 months	Clipped nodes were not
NEOSENTI-TURK (2021)	211	cN1/N2/N3	36 months	localized
MSKCC (2021)	234	cN1	40 months	0.4%
OPBC-04 (2022)	1144	cN1/2/3	42 months	1%

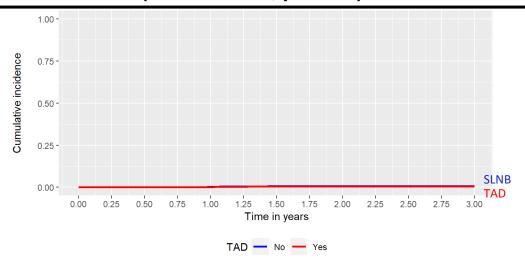
Kahler-Ribeiro-Fontana S, Eur J Surg Oncol 2020; Martelli G, Ann Surg 2020; Piltin M, Ann Surg Oncol 2020; Wong S, Ann Surg Oncol 2021; Cabioglu N, Eur J Surg Onc 2021; Barrio AV JAMA Oncol 2021; Montagna G, JAMA Oncol *in press*

Nodal Recurrence Rates Are Low in cN+/ypN0 Patients Treated with SLNB Alone After NAC

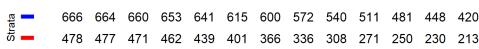
Study	n	Inclusion	Median follow-up	% Nodal recurrence
European Institute of Oncology (2020)	123	cN1/N2	110 months	1.6%
Istituto Nazionale dei Tumori (2020)	81	cN1	87 months	0%
Mayo Clinic (2020)	159	cN1/N2/N3	34 months	0.9%
McGill University (2021)	58	cN1/N2	36 months	0%
NEOSENTI-TURK (2021)	211	cN1/N2/N3	36 months	0%
MSKCC (2021)	234	cN1	40 months	0.4%
OPBC-04 (2022)	1144	cN1/2/3	42 months	1%

Kahler-Ribeiro-Fontana S, Eur J Surg Oncol 2020; Martelli G, Ann Surg 2020; Piltin M, Ann Surg Oncol 2020; Wong S, Ann Surg Oncol 2021; Cabioglu N, Eur J Surg Onc 2021; Barrio AV JAMA Oncol 2021; Montagna G, JAMA Oncol *in press*

Nodal recurrence: TAD vs SLNB OPBC-04 Multicenter Study

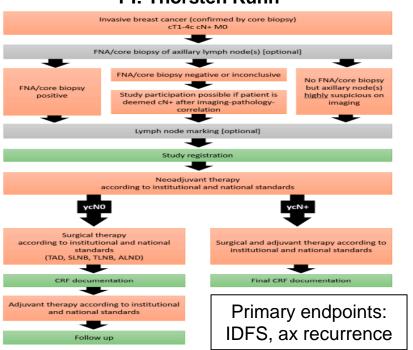


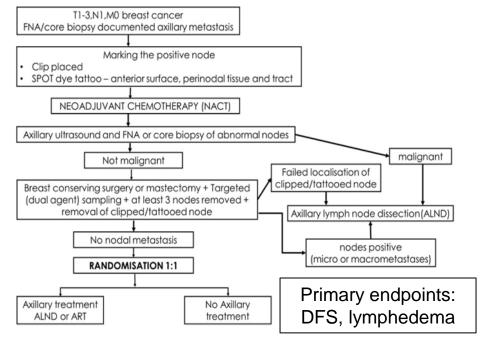
Montagna G, JAMA Oncol in press


Slide courtesy of G. Montagna

Nodal recurrence: TAD vs SLNB OPBC-04 Multicenter Study

3-year rate of any axillary recurrence TAD vs SLNB (0.5% vs 0.8%, p = 0.55)




Slide courtesy of G. Montagna

Ongoing Prospective Clinical Trials

AXSANA PI: Thorsten Kuhn

ATNEC PI: Amit Goyal

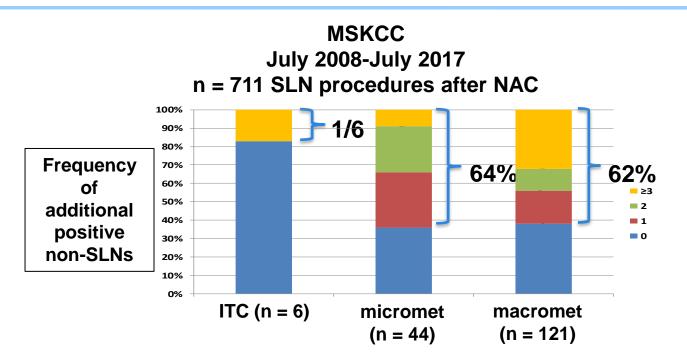
https://clinicaltrials.gov/ct2/NCT04373655

https://clinicaltrials.gov/ct2/NCT04109079

Nodal pCR Varies by Receptor Subtype

Systematic Review and Meta-analysis 33 studies n = 57,531 cN+ patients

Receptor Status	Nodal pCR (%)
HR+/HER2-	18%
HR+/HER2+	45%
HR-/HER2+	60%
Triple Negative	48%


In patients with residual disease in the SLN after NAC, what is the most appropriate axillary treatment?

Rates of Non-SLN Positivity in Patients with + SLNs After NAC

Study	n	Non-SLN positivity
Jeruss	104	71%
Galimberti	396	71.5%
Moo	171	61%

Rates of Non-SLN positivity high after NAC across all studies

Volume of Disease in SLN Is Not a Predictor of Likelihood of Non-SLN Disease After NAC

Management of axilla in patients with ITCs after NAC to be discussed by Dr. Millen

Limited Data on Nodal Recurrence in Patients with Residual Disease in SLN Treated with SLNB Alone

Study	n	Inclusion	Median follow-up	% Nodal recurrence
European Institute of Oncology	9	cN1/N2	110 months	22%
Istituto Nazionale dei Tumori	18	cN1	87 months	0%
Mayo Clinic	19	cN1/N2/N3	34 months	0%
NEOSENTI-TURK	73	cN1/N2/N3	36 months	1.4%

Outside of a clinical trial, patients with residual disease in SLNs post-NAC should be treated with ALND

Kahler-Ribeiro-Fontana S, Eur J Surg Oncol 2020; Martelli G, Ann Surg 2020; Piltin M, Ann Surg Oncol 2020; Cabioglu N, Eur J Surg Onc 2021

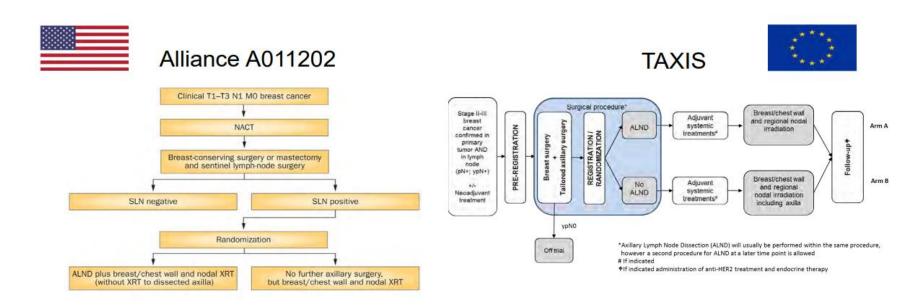
Increase in Use of SLNB Alone in Patients with Residual Disease After NAC: Real World Data

NCDB

2012-2015 n = 30,173 cT0-4 N1/2 NAC

TABLE 2 Pathologic ypN stage and lymph node results

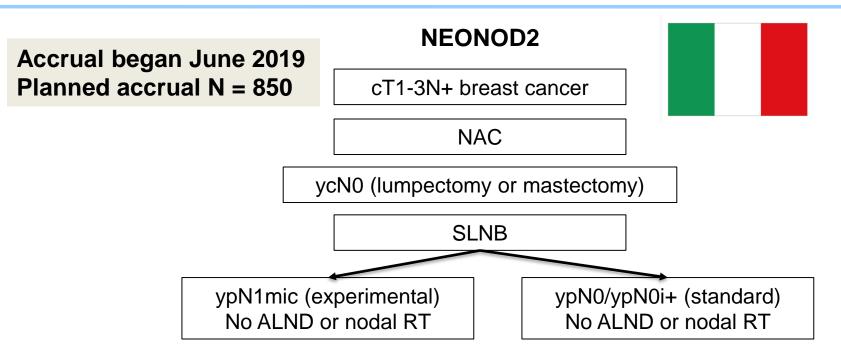
	All patients (n = 30,173) n (%)	SNB (n = 5157) n (%)
Pathologic ypN stage		
0	11,566 (38.3)	3429 (66.5)
1	11,215 (37.2)	1563 (30.3)
2	5325 (17.6)	142 (2.8)
3	2066 (6.8)	23 (0.4)
Nodes examined: n (IQR)	11 (5-18)	3 (2-6)
Nodes positive: n (IQR)	2 (1–5)	1 (0-2)


Nearly 1/3 patients treated with SLNB alone were ypN+

I SPY-2 2011-2021 N = 525 ypN+ after NAC

SLN-only ↑ 6.9% to 39.2% (p < 0.0001)

Ongoing Randomized Clinical Trials


PI: Judy Boughey

PI: Walter P. Weber

https://www.clinicaltrials.gov/ct2/show/NCT01901094

https://clinicaltrials.gov/ct2/show/NCT03513614

Ongoing Clinical Trials for Micromets in SLN

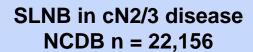
PI: Corrado Tinterri

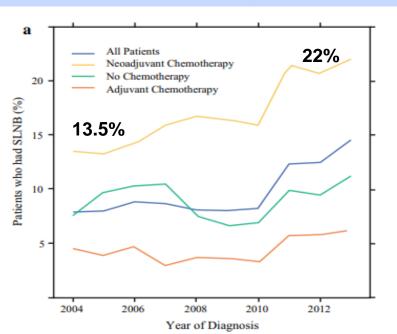
SLNB for Locally Advanced Breast Cancer: Limited Data

Stud	dies of S	SLNB in IB	BC
	N	IR	FNR
Stearns	8	75%	25%
Hidar	20	80%	18%
DeSnyder	16	25%	NR
Karanlik	25	68%	20%

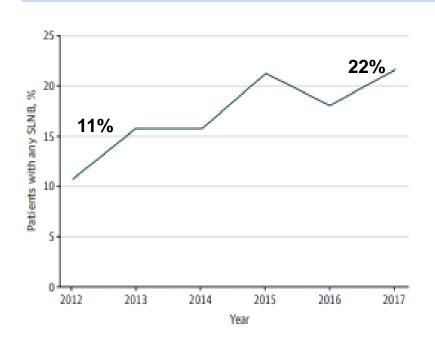
SLNB	in o	ther o	cT4,	N2/N3
------	------	--------	------	-------

_T 4


<u>C14</u>
n = 33 in Z1071
FNR not reported separately


<u>cN2</u>
n = 38 in Z1071 and SN FNAC
FNR 0%, but limited numbers

<u>cN3</u>


No studies evaluating SLNB feasibility

Increasing Use of SLNB in Locally Advanced Breast Cancer: Real World Data

SLNB in IBC NCDB n = 1,096

Park TS, Ann Surg Oncol 2018; Sosa A, JAMA Network Open 2021

Tumor Biology Predicts Response to NAC in Locally Advanced Breast Cancer

MSKCC (2006-2016) cT4 and/or cN2/N3 n = 310 biopsy-proven N+

Receptor Subtype n %

All 310 38

HR+HER2- 132 17

HR-HER2- 70 41

108

MDACC (2002-2018)
Inflammatory Breast Cancer
n = 66 biopsy-proven N+

	Nodal pCR		
Receptor Subtype	n	%	
All	66	36	
HR+HER2-	17	6	
HR-HER2-	21	24	
HER2+	28	66	

Given high nodal pCR rates, SLNB would be appropriate if IR high and if SLNB accurately predicts status of axilla

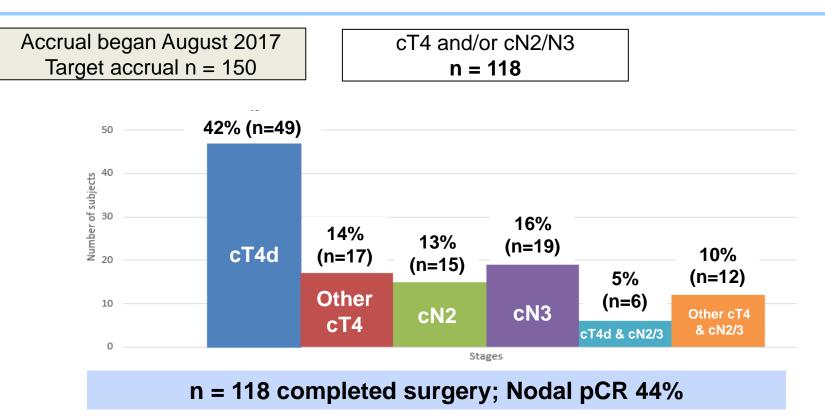
63

HER2+

SLNB After NAC in Patients Presenting with Locally Advanced Breast Cancer: A Prospective Study

Eligibility:

- Female breast cancer patients
- cT4 and/or cN2/N3 treated with NAC
- Clinically node negative after NAC


Design:

- Single-arm prospective trial, multi-institutional (MSKCC and MCI)
- Eligible patients undergo SLNB with dual-tracer mapping, followed by completion axillary dissection
- o Attempt to retrieve ≥ 3 SLNs

Primary Objective:

 Prospectively determine false-negative rate of SLNB after NAC in locally advanced breast cancer patients

SLNB After NAC in Patients Presenting with Locally Advanced Breast Cancer: A Prospective Study

PI: Andrea V. Barrio, Co-PI: Monica Morrow; ClinicalTrials.gov Identifier NCT03255577

What Have We Learned?

 Avoidance of ALND in cN+ patients who achieve nodal pCR after NAC is oncologically safe with low rates of nodal recurrence with either TAD or SLNB

BASED ON RETROSPECTIVE DATA TAD = SLNB

 While dual tracer mapping is preferred in cN+ patients after NAC, in resource constrained settings SLNB with single tracer is feasible, although longer follow-up is needed regarding oncologic safety

What Have We Learned?

- In patients with residual disease in the nodes after NAC (excluding ITCs), ALND remains the standard of care due to the higher residual nodal burden and limited data on nodal recurrence in patients treated without ALND
- In patients with locally advanced breast cancer, ALND is indicated after NAC irrespective of response to treatment; ongoing studies are evaluating the feasibility of SLNB in this cohort

Thank You

