Azacitidine and Venetoclax in AML: When I Use It Today, Where I am Starting to Use It, and Where I Believe I Will Use It.

Jeffrey Lancet, MD

Chair, Department of Malignant Hematology

Moffitt Cancer Center

Tampa, FL

- Consulting: Treadwell Therapeutics, Bristol Myers Squibb, Moderna, AbbVie
- Research Funding: AbbVie

United States FDA Label for Venetoclax in Comination with Azacitidine, Decitabine, or Low-Dose Cytarabine in AML

- Newly diagnosed AML in adults:
 - 75 years or older
 - OR with comorbidities precluding intensive induction chemotherapy

VIALE-A: Azacitidine ± Venetoclax in Treatment-Naive Patients With AML Ineligible For Standard Induction Therapy

Adults with previously untreated AML ineligible for standard cytarabine/anthracycline due to age (≥ 75 yrs) or comorbidities, no hypomethylating agent for antecedent hematologic disorder (N = 431)

(n = 145)

Until progression, intolerance, or withdrawal

- Primary endpoint: OS, rate of CR + CRi (outside the US)
- Other endpoints: composite CR or CRi, EFS, OS by molecular subtype, QoL, CR, transfusion independence
 Comorbidities: ECOG 2-3

CHF requiring treatment or LVEF \leq 50% DLCO \leq 65% or FEV1 \leq 65% Creatinine clearance \geq 30 to < 45 ml/min T.bili > 1.5 to \leq 3.0x ULN

DiNardo. EHA 2020. Abstr. LB2601

VIALE-A: Azacitidine ± Venetoclax in Treatment-Naive Patients With AML Ineligible For Standard Induction Therapy

MRD Following HMA/Venetoclax (VIALE-A)

Flow cytometry based MRD in CR/CR_i patients

 $MRD < 10^{-3} = 41\%$ $MRD \ge 10^{-3} = 59\%$

Pratz, et al. J Clin Oncol 2021; 40:855

4-Gene Classifier for OS with Aza + Ven

Ven + Aza (N = 279)	n	Events	Median OS, months (95% CI)
Higher Benefit	145	96	26.51 (20.24, 32.69)
Intermediate Benefit	71	57	12.12 (7.26 – 15.15)
Lower Benefit	63	61	5.52 (2.79 – 7.59)

Dohner H, et al. ASH 2022

What about HMA + Venetoclax in Younger or Fitter Patients?

Variable	Ven/aza	IC	P (ven/aza vs IC)
Response			
CR	89 (62.2)	96 (64.4)	
CRi	13 (9.1)	4 (2.7)	
MLFS	8 (5.6)	5 (3.4)	
Overall response (CR + CRi + MLFS)	110/143 (76.9)	105/149 (70.5)	.2109
Death			
Within 30 d of treatment	7 (4.9)	8 (5.4)	.8545

OS (propensity-matched patients)

<u>Fa</u>	avoring HMA/Ve	n
	RUNX1 Splicing mutation Prior Rx Age > 65 ELN Adverse	

CPX-351 vs HMA-Venetoclax – Real World Experience

Restricted to CPX-351 trial-eligible patients

	Combined coh		
	CPX-351 (n = 217)	ven/aza (n = 439)	Ρ
Median cycles (range)	2 (1-5)	4 (1-28)	Not applicable
30-day mortality, % (95% Cl)	5% (2%-8%)	5% (3%-7%)	.51
60-day mortality, % (95% Cl)	10% (6%-14%	13% (10%-16%)	.10
Diagnosis of infection,* % (95% CI)	51% (42%-61%)	20% (15%-25%)	<.00005

Matthews, et al. Blood Adv 2022; 6:3997

Prospective Studies Comparing Induction Chemotherapy vs HMA-VEN

Study	Phase	Туре	Therapy	Key inclusion	Key exclusion
NCT04801797	11	Randomized	• IC • AZA-VEN	• Age 18+ • ECOG ≤2	 FLT3 Age <60 with NPM1 mutated Favorable risk
NCT03573024	Ш	Single arm	• AZA-VEN	• Age 18-59 • ECOG ≤2 • Adverse risk	• Willing to receive IC
NCT05554393 (MyeloMATCH)	II	Randomized	 7+3 7+3 + VEN AZA-VEN 	• Age 18-59 • ECOG 0-3	 Favorable and adverse risk by ELN 2017 criteria <i>FLT3-ITD/TKD</i> Secondary or therapy- related AML
NCT05554406 (MyeloMATCH)	11	Randomized	 CPX-351 7+3 AZA-VEN 7+3+ VEN CPX-351 + VEN 	 Age 18–59 ECOG 0–3 Adverse risk per ELN 2017 criteria 	 Favorable or intermediate risk <i>FLT3- ITD/TKD</i>

What about HMA-VEN for Remission Induction Prior to Allogeneic Transplant?

Study	Туре	Participating sites	Number of patients	12-month NRM (%)	12-month CIR	12-month RFS (%)	12-month OS (%)	Relapse (%)/median LFS (month)	OS (months)
Pasvolsky et al ³⁵	Retrospective	Multicenter	24	19.1		58	63		
Winters et al ³⁶	Retrospective	Single center	29			66.1	74.5		
Pollyea et al ^{37,38}	Retrospective	Single center	21	11		80			NR
Kennedy et al ^{39,40}	Retrospective	Multicenter	88	17	18		73		
Nizamuddin et al ⁴¹	Retrospective	Single center	36					39/11.2	25.4
Rautenberg et al ⁴²	Retrospective	Single center	26			67	81		NR

Where I Believe I Will Use It.

- Triplets
- Sequencing
- Time-limited therapy

Frontline Lower Intensity FLT3i " Doublet" vs "Triplet" with the Addition of Venetoclax: Retrospective Pooled Analysis

LIC = lower intensity chemotherapy

Yilmaz M et al, Blood Cancer Journal 2022

Courtesy of C. Dinardo, MD

Median

Median

Aza + Ven + Gilteritinib in Newly Diagnosed FLT3-Mutated AML

CRc 100% in the frontline setting 90% CR, 6% CRi, 4% MLFS 87% MRD negative by flow 40% (n=12) proceeded to alloSCT in CR1

No 30 or 60 day mortality, 1 death in CR

4 relapses to date (13% relapse rate)

Short N, et al. EHA 2023

VICEROY: Phase 2 Multicenter Frontline Optimization Trial of Azacitidine, Venetoclax, and Gilteritinib (N = 80~100)

Survival Comparison: AZA/VEN/Magrolimab vs HMA/VEN – TP53-Mutated Arm

Comparator datasets from Phase 1b/2 AZA+VEN and Dac10+VEN F/L studies from MDACC (N = 150)*

Comparison of baseline characteristics among TP53m patients only

Parameters	A-V-M (N = 27)	HMA-Ven (N = 45)
Age, years	66 [58 to 84]	74 [61 to 86]
t-AML	12 (44)	17 (38)
CTG- HR CTG-CK	22 (82) 21 (78)	43 (96) 41 (91)
ASXL1	2 (7)	2 (4)
RUNX1	2 (7)	2 (4)

MV Cox regression analysis

Variable	HR	95% Confidence interval
Age	0.9865	0.9522 to 1.025
t-AML[Y]	1.213	0.6974 to 2.074
CTG HR[Y]	1.202	0.4719 to 3.700
Rx arm [AVM]	0.4091	0.1781 to 0.8811

Adjusted HR for AVM arm for death = 0.41, 95% CI = 0.18-0.88

Comparison of overall survival (unmatched groups)

Daver N, et al. Blood. 2022;140: Abstract 61.

Triplets with IDH Inhibitors: Early Promise

Response Rates

Newly Diagnosed AML - MRD Rates

lvo + Ven = 25%

Ivo + Ven + HMA = 83%

OS in AML with Signaling Mutations

HMA/Ven Maintains Beneficial Effect in AML with Secondary Type Mutations

Senapati, et al. Blood 2023; 142:1647

Sequencing of HMA-Ven with Other Targeted Therapies

Bewersdorf, et al. Leuk Res 2022; 122

Bewersdorf, et al. Leuk Lymphoma 2023; 64:188

Choosing the Best Initial Therapy: I-DATA Study

Primary Objective: Overall treatment failure rate at 24 months

What About Aza/Ven Resistance?

Waclacwizek, et al. Cancer Discovery 2023 Dinardo, et al. Blood 2020 Pei, et al. Cancer Discovery 2020

Monocytic AML Related to Ven Resistance

Baseline Variables	Univariate OR	P-value	Multivariate OR	P-value
Age	0.98 (0.95-1.02)	0.40		
Antecedent Hematologic Dz	0.57 (0.12-2.77)	0.48		
Complex Cytogenetics	2.67 (0.86-8.24)	0.09		
ELN Risk Group	4.08 (0.50-33.64)	0.07		
RAS Pathway	6.42 (1.81-22.71)	0.004	2.27 (0.20-25.52)	0.51
TP53	1.48 (0.28-7.77)	0.64		
NPM1	0.162 (0.02-1.30)	0.09	0.49 (0.034-7.0)	0.60
FLT3	0.66 (0.14-3.27)	0.61		
FAB M0/M1	0.13 (0.04-0.43)	8000.0		
FAB M5	18.30 (4.70-71.13)	<0.0001	33.48 (2.66-421.9)	0.0066

Pei, et al. Cancer Discovery 2023 Bottomly, et al. Cancer Cell 2022

Can HMA-VEN Be Discontinued?

Chua, et al. Blood Adv 2022; 6:3879

Prospective HMA-VEN Discontinuation Trial

Primary Endpoint: Rates of CR/CRi at 18 months from time of discontinuation of HMA/VEN

Secondary Endpoints: 1) OS in MRD-negative patients who continue HMA/VEN, 2) Duration of TFMR, 3)Response rates to re-treatment following relapse

PI: Onyee Chan, MD

Summary

- HMA-Venetoclax combination is an effective standard-of-care for older, less fit adults
- Equivalence to induction chemotherapy in younger, more fit patients appears likely, but evidence is not yet supported by a randomized trial
- Triplet combinations that include targeted agents (IDH, FLT3 inhibitors) appear promising
 - HMA-Ven sequencing with IDH inhibitors needs further study
- Risk-adapted discontinuation strategies under development

01

10.000