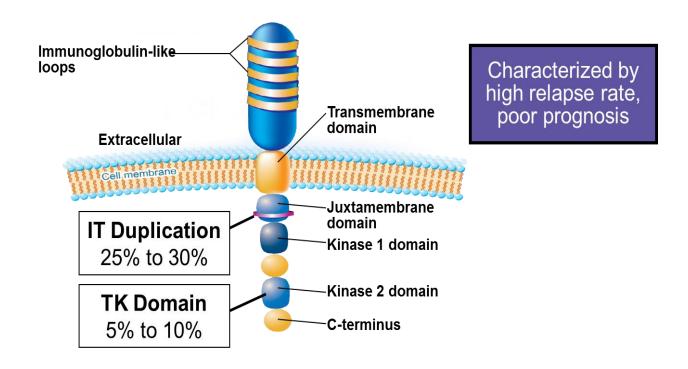
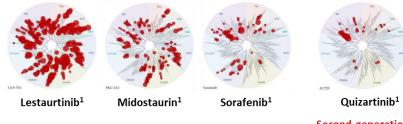
The Gold Standard in the Use of FLT3 and IDH Inhibitors in AML

Jeffrey Lancet, MD

Chair, Department of Malignant Hematology


Moffitt Cancer Center

Tampa, FL


Disclosures

- Consulting: Treadwell Therapeutics, Bristol Myers Squibb, Moderna, AbbVie
- Research Funding: AbbVie

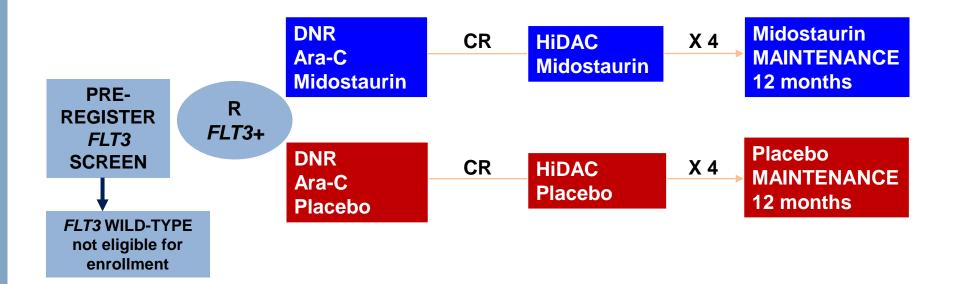
Activated FLT3 Mutations in AML

Selectivity and potency of FLT3 Inhibitors

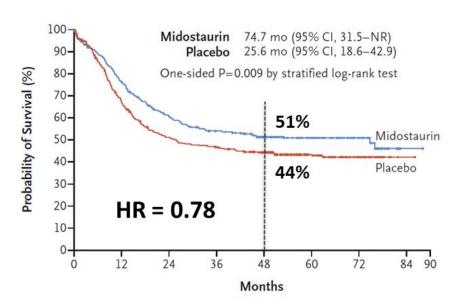
First-generation multikinase inhibitors²

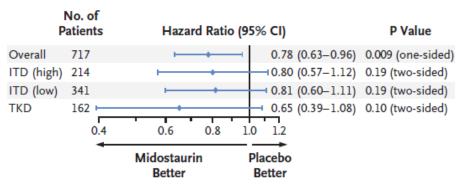
Second-generation FLT3 inhibitor³

1 st generatio	1st	st ge	ene	rati	io
---------------------------	-----	-------	-----	------	----

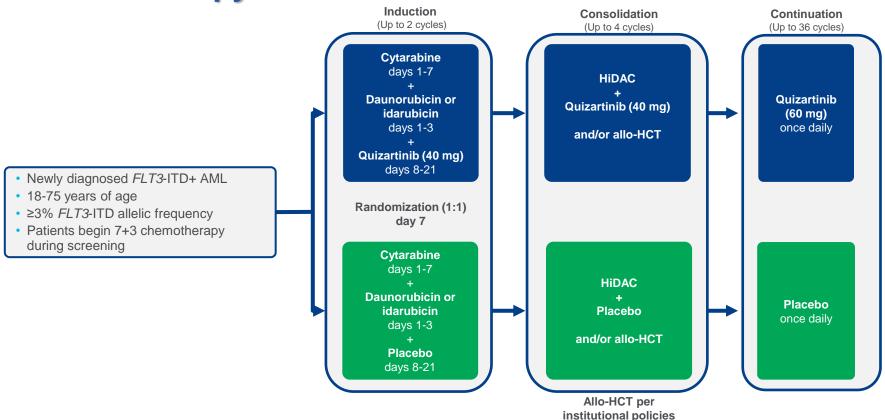

tion

2nd generation

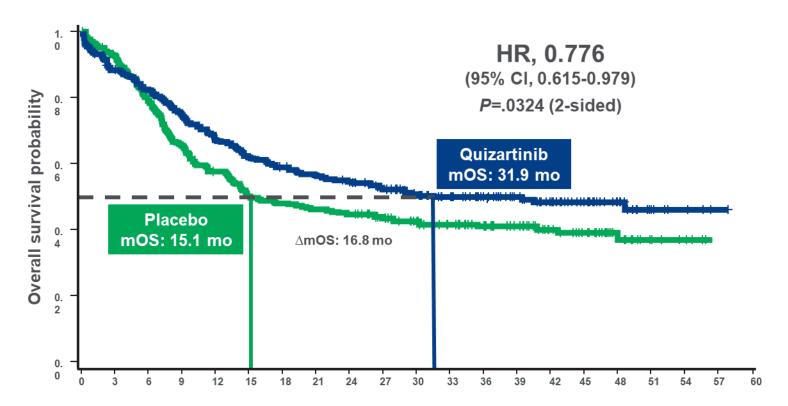

	IC ₅₀ (medium)	IC ₅₀ (plasma)	Single agent clinical activity	Kinase inhibition	
Lestaurtinib	2 nM	700 nM	-	Type 1	
Midostaurin	6 nM	~1000 nM	-	Type 1	
Sorafenib	3 nM	~265 nM	+/-	Type 2	
Quizartinib	1 nM	18 nM	+	Type 2	
Crenolanib	2 nM	48 nM	+	Type 1	
Gilteritinib	3 nM	43 nM	+	Type 1	Ī


- 1. Davis MI, et al. Nat Biotechnol. 2011;29:1046-1051. 2. Stone R, et al. N Engl J Med. 2017;377:454-464.
- 3. Zarrinkar P, et al. Blood. 2009;114:2984-2992. 4. Cortes JE, et al. J Clin Oncol. 2013;31:3681-3687.

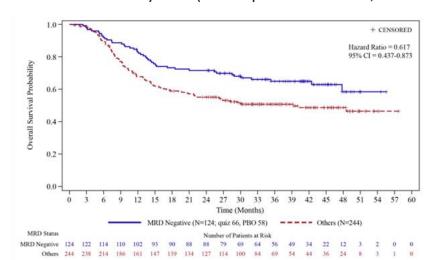
C10603/RATIFY Schema



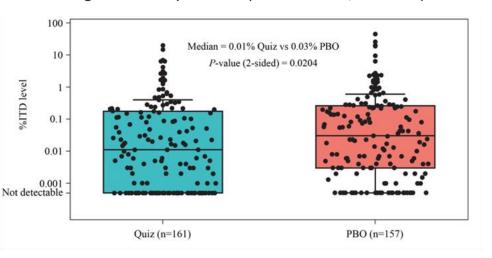
Overall Survival



QuANTUM-FIRST Phase 3 Trial: Induction Chemotherapy +/- Quizartinib

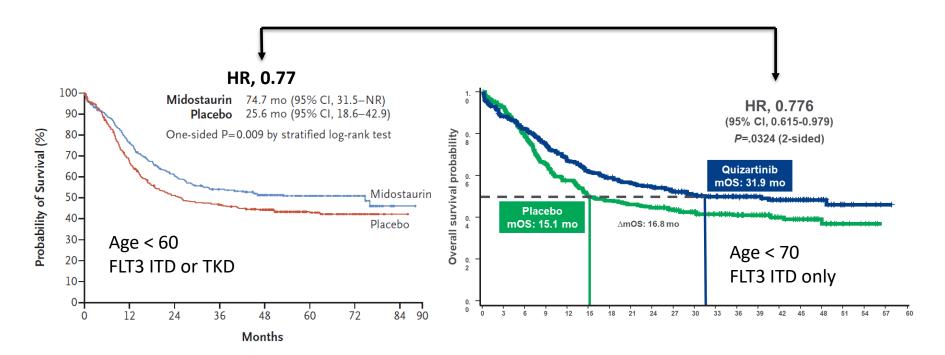


Overall Survival



QuANTUM-First: FLT3-ITD—Specific MRD Clearance Is Associated With Improved OS

Percentage of patients in CRc with *FLT3*-ITD MRD of $<10^{-4}$ was similar across study arms (24.6% guiz vs 21.4% PBO, P = 0.385)


Percentage of patients in CRc with undetectable MRD ($< 1x10^{-5}$) was greater with quizartinib (13.8% vs 7.4%, P = 0.017).

Long-term survival benefits conferred by quizartinib in the QuANTUM-First may in part derive from an early and deep reduction of the *FLT3*-ITD+ leukemia burden

Erba HP, et al. Lancet 2023; 401(10388): 1571-1583

Midostaurin or Quizartinib in Newly Diagnosed FLT3+ AML????

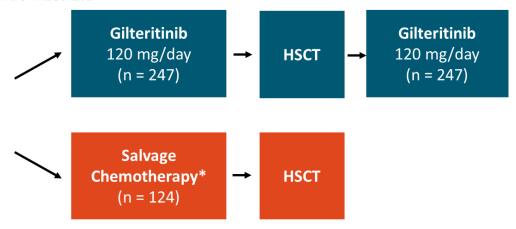
No Data Comparing 2nd Generation FLT3 Inhibitors vs Midostaurin!

HOVON 156 AML Trial: Phase 3, Midostaurin + Induction vs Gilteritinib + Induction

- Last patient enrolled June 2023 -
- Endpoint analysis expected October 2025

Crenolanib versus midostaurin combined with induction and consolidation chemotherapy in newly diagnosed *FLT3* mutated AML

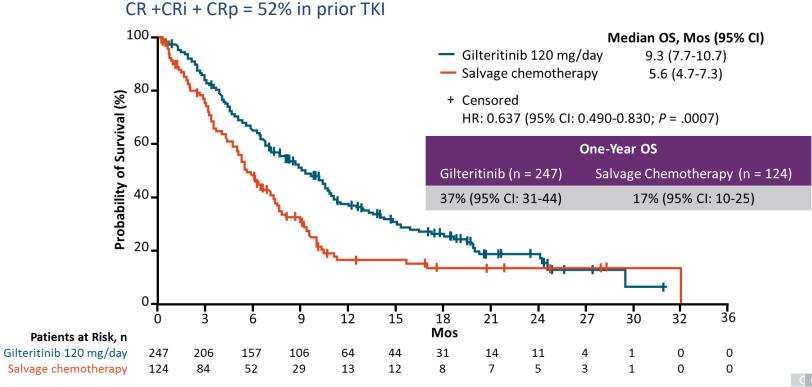
- ON HOLD


Gilteritinib

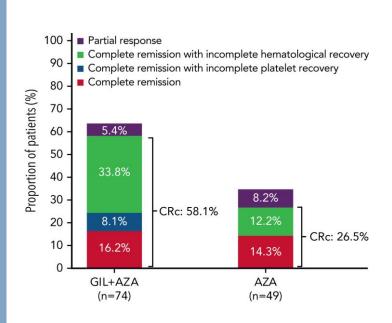
 A highly potent, selective FLT3/AXL inhibitor with activity in vitro against FLT3-ITD and FLT3-D835⁴⁻⁶

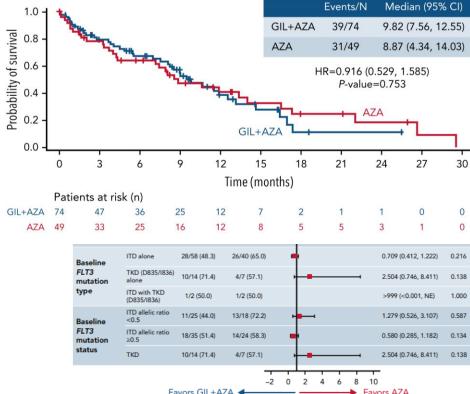
Phase III ADMIRAL Study: Gilteritinib in *FLT3*-Mutant R/R AML

Randomized 2:1

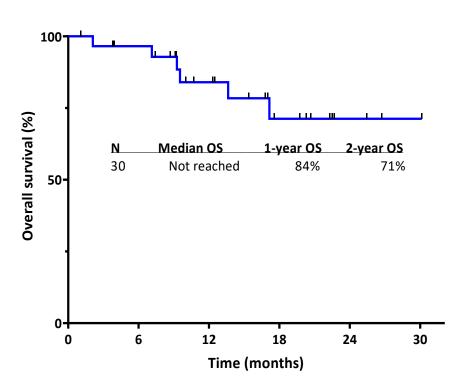

Adults w/FLT3-mutant AML refractory to initial induction or untreated first relapse after prior CRc (CR + CRi + CRp), ECOG PS ≤ 2, normal liver and renal function, prior frontline midostaurin or sorafenib allowed, but no other prior FLT3 inhibitors (N = 371)

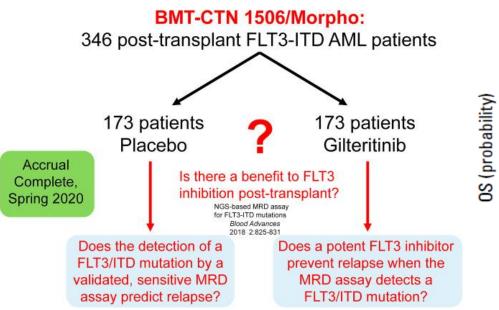
*Salvage chemotherapy selected prior to randomization: MEC + FLAG-IDA (high intensity) for 1-2 cycles; Low-dose cytarabine + azacytidine (low intensity) administered until disease progression or intolerance

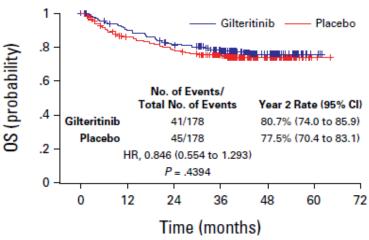

- Primary endpoints: OS, CR/CRh rate
- Secondary endpoints: EFS, CR rate


Gilteritinib Prolongs OS in FLT3-Mutant R/R AML

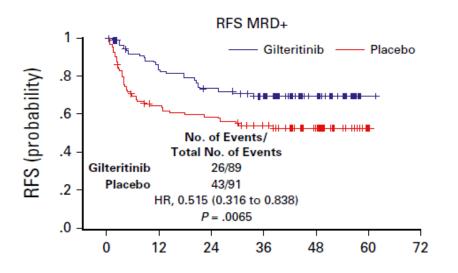
Slide credit: clinical options.com

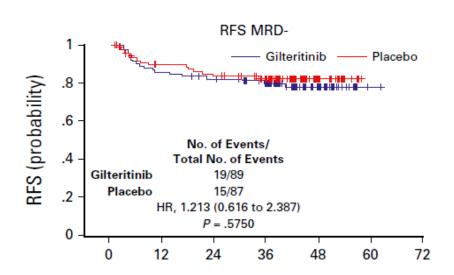

Phase 3 Trial of Gilteritinib + Azacitidine versus Azacitidine for Newly Diagnosed *FLT*m+ AML Ineligible for Intensive Chemotherapy



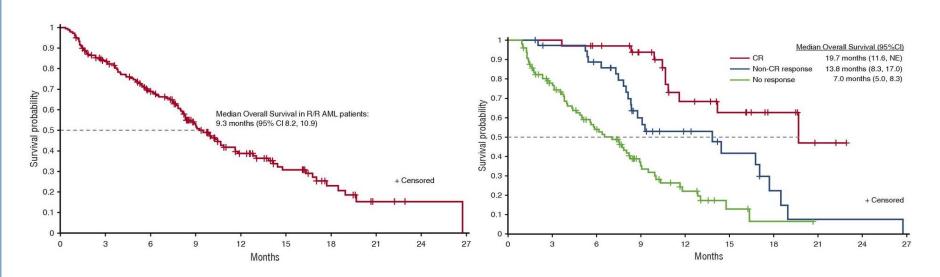

Wang ES, et al. *Blood* 2022; 140(17): 1845-1857.

Azacitidine, Venetoclax, and Gilteritinib in Newly Diagnosed FLT3+ AML



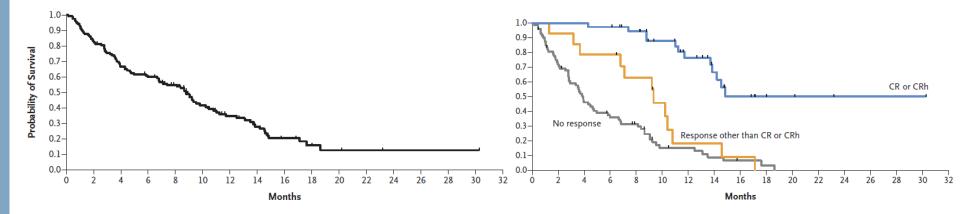

FLT3 Inhibitors Post Transplant – BMT-CTN 1506/Morpho Study

FLT3 Inhibitors Post Transplant – BMT-CTN 1506/Morpho Study


MRD-positive = MRD $\geq 10^{-6}$ pre-transplant and/or day 30-90 post-transplant

Isocitrate Dehydrogenase (IDH) Mutations as a Target in AML

Tumor cell IDH is an enzyme of the Tumor Cell Histone citric acid cycle demethylases Citrate Mitochondria Isocitrate Mutant IDH2 produces 2-Citrate-IDH1 hydroxyglutarate (2-HG), Isocitrate Nucleus IDH3 | IDH2 which alters DNA methylation and leads to a HIF-1a block in cellular stabilization Endostatin differentiation **♦ VEGE** Dysregulation of epigenetic and gene expression profiles Cancer biomarker? AG-221 (CC-90007) is a selective, oral, potent Cytoplasm inhibitor of the mutant IDH2 (mIDH2) enzyme AML, acute myeloid leukemia; IDH, isocitrate dehydrogenase; 2-HG, 2-hydroxyglutarate; mIDH2, mutated IDH2


Enasidenib (IDH2 inhibitor) in Relapsed/Refractory AML

Overall response rate = 38.8% CR + CRi/CRp = 29%

Ivosidenib (IDH1 Inhibitor) in Relapsed/Refractory AML

Overall response rate = 41.6% CR + CRi/CRp = 30%

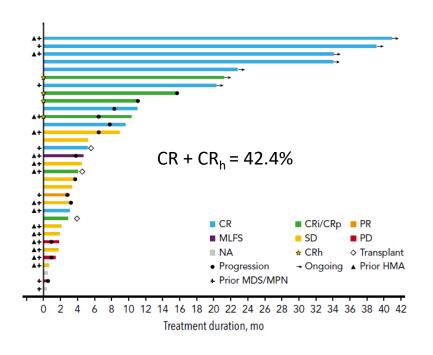
AGILE: Phase 3 Azacitidine +/- Ivosidenib in Newly Diagnosed *IDH1* mutated AML

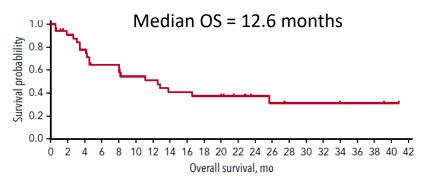
Patients with
untreated AML (WHO
criteria); centrally confirmed
IDH1 mutation status;
ineligible for IC; ECOG PS 0-2
(planned N = 200)

Ivosidenib 500 mg PO QD +
Azacitidine 75 mg/m² SC or IV
(n = 72)*

Placebo PO QD +
Azacitidine 75 mg/m² SC or IV (n = 74)*

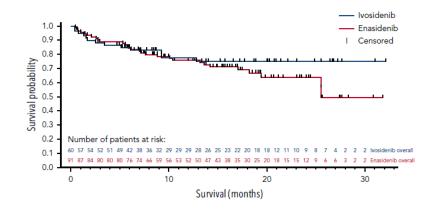
*Enrollment at time of data cutoff (May 18, 2021).

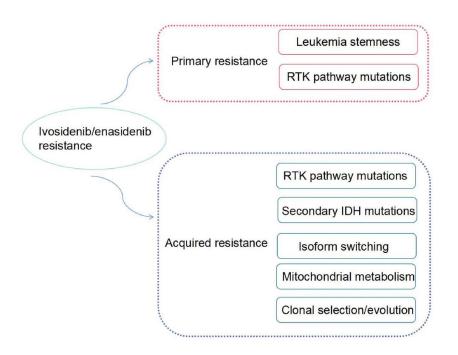

- Enrollment halted based on efficacy as of May 12, 2021 (N = 148)
- Primary endpoint: EFS with ~173 events (52 mo)
- Secondary endpoints: CRR, OS, CR + CRh rate, ORR

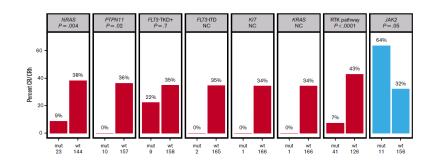

AGILE: Phase 3 Azacitidine +/- Ivosidenib in Newly Diagnosed *IDH1* mutated AML

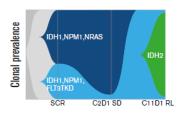
Survival Outcome	I۱	/O + AZA	PBO + AZA		HR (95% CI)	P Value	
Median EFS in ITT population		NR	NR		0.33 (0.16-0.69)	.0011	
Median EFS in patients achieving CR by Wk 24, mo (95% CI)		(14.8-NE)	17.8 (9.3-NE))	NR	NR	
Median OS, mo		24.0	7.9		0.44 (0.27-0.73)	.0005	

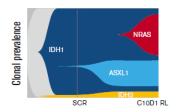
Response rates, % (95% CI)	IVO + AZA	PBO + AZA
Overall Response	62.5 (50.3-73.6)	18.9 (10.7-29.7)
Complete Response	47.2 (35.3-59.3)	14.9 (7.7-25.0)


Ivosidenib Monotherapy in Newly Diagnosed AML




Combining IDH Inhibitors with Induction Chemotherapy


	lvosidenib 500 mg + chemotherapy, n (%)			Enasidenib 100 mg + chemotherapy, n (%)			
Response category	All, N = 60	De novo AML, n = 42	Secondary AML, n = 18	All, N = 91*	De novo AML, n = 56	Secondary AML, n = 35	
CR/CRi/CRp	46 (77)	37 (88)	9 (50)	67 (74)	45 (80)	22 (63)	
CR	41 (68)	32 (76)	9 (50)	50 (55)	36 (64)	14 (40)	
CRi/CRp	5 (8)	5 (12)	_	17 (19)	9 (16)	8 (23)	
MLFS	4 (7)	3 (7)	1 (6)	10 (11)	5 (9)	5 (14)	
PR	2 (3)	_	2 (11)	2 (2)	1 (2)	1 (3)	
Treatment failure†	8 (13)	2 (5)	6 (33)	12 (13)	5 (9)	7 (20)	



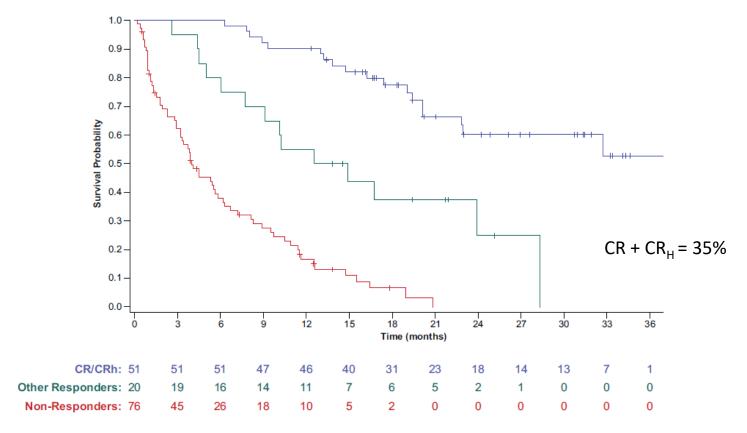
Resistance to IDH inhibitors

Zhuang, et al. Front Oncol 2022 Choe, et al. Blood Adv 2020; 4:1894

IDH Inhibitor Differentiation Syndrome

- 10-15% patients
- May occur LATE
- High blasts, Higher LDH
 - Higher risk
- Tx: Steroids, support, hold drug
- Consider: Hydrea if high WBC

Table 1. Frequency of Signs and Symptoms Consistent With IDH-DS^a


Sign or Symptom	Patients With IDH-DS, No. (%) (n = 33) ^b
Dyspnea	28 (85)
Unexplained fever (body temperature of 38.0°C for 2 d)	26 (79)
Pulmonary infiltrates	24 (73)
Hypoxia	19 (58)
Acute kidney injury (CTCAE grade ≥2)	14 (42)
Pleural effusion	14 (42)
Bone pain or arthralgia	9 (27)
Lymphadenopathy	8 (24)
Rash	8 (24)
Disseminated intravascular coagulopathy	7 (21)
Edema or weight gain of >5 kg from screening	7 (21)
Pericardial effusion	5 (15)

Abbreviations: CTCAE, Common Terminology Criteria for Adverse Events¹⁴; IDH-DS, isocitrate dehydrogenase differentiation syndrome.

^a Signs and symptoms included in this table are based on retrospective differentiation syndrome review committee review of clinical records.

^b Patients may have had multiple symptoms.

Olutasidenib: New IDH1 Inhibitor for R/R AML

Summary

- FLT3 and IDH inhibitors are changing the AML landscape
- FLT3 inhibitors combined with induction improve survival in FLT3m
 - Role in combination with low intensity therapies still unclear
- Role of FLT3 inhibitors in maintenance therapy remains unclear
- IDH inhibitors have disease modifying capacity as single agents and in combination with HMA/Ven.
- IDH inhibitor resistance is multifactorial
 - High sensitivity and single cell sequencing may be critical to abrogate emergence of resistance

