

What is the best timing for bispecific antibody and CAR-T therapy in DLBCL?

Andrew D. Zelenetz, M.D., Ph.D.

Attending Physician, Lymphoma Service Professor of Medicine, Weill-Cornell Medical College Chair, NCCN B-cell Lymphoma Guidelines Panel

Disclosures for Andrew D. Zelenetz, MD, PhD

Research Support/P.I.	Genentech/Roche, Gilead, BeiGene, Abbvie, Pharmacyclics/Janssen
Employee	None
Consultant	BMS/Celgene/JUNO, Genentech/Roche, Gilead/Kite; BeiGene; Pharmacyclics, Jansen, Amgen, Astra-Zeneca, Novartis, MEI Pharma
Major Stockholder	None
Speakers Bureau	None
Scientific Advisory Board	Lymphoma Research Foundation
Stockholder	None (not including potential holding of a 401K mutual fund)

Bispecific antibodies: The third "immunotherapy milestone" in B-NHL therapy?

Common structural properties of bispecific antibodies

- Bivalent IgG-like, full-length Ab co-targeting
 CD20 (B-cells) and CD3 (pan-T-cell marker)
- Different BsAb target different epitopes on CD20
- Fc mutations to avoid ADCC, CDC, or fratricidal killing of anti-tumor T-cells
- Preserved FcRn for prolonged half-life
- Unlike BsAb without Fc domain (eg, BiTEs, DARTs), IgG-like BsAb share PK properties of MoAb

Basic mechanism of action of bispecific antibodies

Sun LL et al. SciTransl Med. 2015;7(287)287ra70.

Overview of CD20xCD3 bispecific antibodies

* Approved by the U.S. FDA and other regulatory agencies for the treatment of patients with large B-cel lymphoma

Modified from Falchi L et al. *Blood*. 2023;141(5):467-480.

Memorial Sloan Kettering Cancer Center

Key Clinical Data Single-agent CD20xCD3 BsAb

Glofitamab in 3L+ DLBCL: expansion cohort (n=154)

- Premedication: acetaminophen, anti H2, and steroids (dexamethasone preferred).
- Hospitalization on C1D8 (1st GLOFI dose)

Characteristic		N (%)
Median age, years (range)		66.0 (21–90)
	DLBCL	110 (71.4)
	trFL	27 (17.5)
NHL Subtype	HGBCL	11 (7.1)
	PMBCL	6 (3.9)
Median no. prior lines, (range)		3 (2–7)
≥3 prior lines		92 (59.7)
Prior CAR-T		51 (33.1)
Refractory to prior CAR-T		46 (29.9)

	IRC (N=155)*		
CR, n (%) [95% Cl]	62 (40) [32.2–48.2]		
ORR, n (%) [95% Cl]	80 (52) [43.5–59.7]		
Median follow-up, mos (rng)	18.2 (0–33)		
Ongoing CRs, n/N (%)	42/62 (68)		
Median DoCR, mos (95% CI)	26.9 (18.4–NE)		
*Intent-to-treat population; CI, confidence interval; NE, not estimable.			

Landmark analysis by response at EOT

Dickinson MJ et al. N Engl J Med. 2022;387(24):2220-2231. Falchi L et al. ASCO 2023. Abstract 7550.

Epcoritamab in 3L LBCL: Responses and outcomes (n= 157)

* Premed: acetaminophen, anti H2, and prednisone x4 days post dose; hospitalization on C1D15.

Characteristic	N=157
Median age (range), y	64 (20–83)
DLBCL	139 (89)
HGBCL	و (6)
PMBCL	4 (3)
FL Gr ₃ B	5 (3)
Median n. prior lines (range)	3 (2–11)
≥3 Lines of therapy, n (%)	111 (71)
Primary refractory ^b disease, n (%)	96 (61)
Prior CAR T therapy, n (%)	61 (39)

Median follow-up = 10.7 months

Thieblemont C et al. EHA 2022. Abstract LB2364.

PFS after CAR-T cell therapy failure by treatment group (DESCAR-T registry)

^{*} BTK Inhibitors, MALT-1 inhibitors, anti-CD19, anti-CD38, second CAR T, others.

Bispecific antibodies (BsAbs) do not impair response to CAR T cells

- 47 patient with prior BsAb
 - Median time on BsAb 98 days
 (IQR 56-160)
 - OR 47%, CR 19%
- CAR T-cell therapy after BsAb: axi-cel (n=22, 47%), tisa-cel (n=20, 43%) or liso-cel (n=5, 11%)
 - CRS 79%, grade ≥3 6%
 - ICANS 23%, grade ≥3 2%
- For comparison to patients without prior BsAb, 42/47 BsAb exposed patients were propensity matched with 42 patients from the DESCART registry
 - Prior BsAb did not impair PFS or OS
 - No differences in toxicities

Table.- Baseline characteristics of CAR T-cell recipients according to their previous exposure to bispecific antibody therapy.

Variables	BsAb cohort	Control cohort	SMD	
	n=42	n=42		
Patient and lymphoma characteristics				
Male gender, n (%)	29 (69)	31 (74)	-0.085	
Age, median years (range)	63 (31-82)	67 (21-78)	0.061	
Histology, n (%)				
- DLBCL/HGBL	35 (83)	31 (74)	0.196	
- PMBL/Transformed	7 (17)	11 (26)		
> 2 prior lines, n (%)	36 (86)	36 (86)	0	
Previous SCT, n (%)	8 (19)	7 (17)	-0.05	
Bulky disease, n (%)	15 (36)	19 (45)	0.16	
CRP > 3mg/dL, n (%)	16 (38)	12 (29)	-0.164	
LDH > 2xULN, n (%)***	12 (29)	16 (38)	0.168	
ECOG >1, n (%)***	4 (10)	3 (7)	-0.069	
CAR-T related characteristics	00 10	40 - pc)		
Axi-cel, n (%)	22 (52)	20 (48)	-0.078	
Months between last prior treatment and	2.7 (2.3-3.8)	2.5 (2.0-3.5)	0.201	
CAR-T infusion, median (IQR)				
Response to bridging, n (%)				
- Responder	8 (19)	5 (12)	-0.159	
- Non responder	26 (62)	22 (52)		
- No bridge	5 (12)	11 (26)		
- Not evaluated	3 (7)	4 (10)		
Year of CAR-T infusion ≥2020, n (%)	29 (69)	29 (69)	0	

 Table_Abbreviations:
 IQR interquartile range, DLBCL diffuse large B-cell lymphoma, HGBL high grade B-cell lymphoma, PMBL

 primary mediastinal
 B-cell lymphoma, SCT stem cell transplant, CRP C-Reactive Protein, LDH Lactate Dehydrogenase, ULN Upper

 Limit of Normal, ECOG Eastern Cooperative Oncology Group, CAR chimeric antigen receptor.

lacoboni et al. ASH 2023, Abstract 228

Proposed R/R DLBCL treatment paradigm

R, rituximab; CH(O)P, cyclophosphamide, doxorubicin, (vincristine), prednisone; EPOCH, etoposide, cyclophosphamide, doxorubicin, (vincristine), prednisone; CAR, chimeric antigen receptor; HDR-ASCS, high-dose therapy with autologous stem cell support; BR, bendamustine, rituximab; alloSCT, allogeneic stem cell transplantation. NOTES: Only drugs / regimens with regulatory approval are listed; clinical trial participation, where available and appropriate, may be offered at each stage of the algorithm; *if not previously used.

CRS mitigation and incidence across CD2oxCD3 BsAb Trials*

Drug	Ν.	Population	Route (target dose)	Mitigat	Mitigation strategies during Cycle 1			% CRS				% toci use
				Step-up dosing	Hospitalization	Other		G1	G2 G	3 ∎G4		
	90	FL, R/R	IV (30 mg)	Yes	Optional							8
Mosunetuzumab	39	B-NHL, R/R	SC (45 mg)	Yes	Optional							10
	27	B-NHL, R/R	SC, rapid SUD (45 mg)	Yes	Optional							0
Glofitamah	154	DLBCL, R/R	IV (30 mg)	Yes	Mandatory	Obinutuzumab						32
Clontainas	29	MCL, R/R	IV (0.6-30 mg)	Yes	Mandatory	Obinutuzumab						24
Epcoritamab	157	LBCL, R/R	SC (48 mg)	Yes	Mandatory	Post-dose steroids						28
Odronextamab	145	B-NHL, R/R	IV (0.5-320 mg)	Yes	Mandatory	Split-dose						5
							0	15	30	45	60	

* This table is not comparative; direct cross-trial comparisons should be avoided.

Modified from Falchi L et al. *Blood*. 2023;141(5):467-480.

Consensus recommendations for the management of acute toxicities associated with bispecific antibodies

Memorial Sloan Kettering

Cancer Center,

≢

Crombie JL, Graff T, Falchi L, et al. Blood. 2024; doi 10.1182/blood.2023022432

Memorial Sloan Kettering Cancer Center

Key Clinical Data CD20xCD3 BsAb-containing combinations

Enhancing the efficacy of BsAbs in R/R DLBCL: Novel-novel doublets

	Descriptor	Mosunetuzumab + polatuzumab (n=98)	Glofitamab + polatuzumab (n=125)	Epcoritamab + lenalidomide (n=35)	
	Median age (range)	68 (20-98)	67 (23–84)	72 (41–85)	
Baseline	Median n prior lines (range)	2 (1-8)	2 (1–7)	2 (1-4)	
characteristics	1 prior line	35.7%	40%	49%	
	Prior CAR-T	35.7%	22.4%	23%	
Paspapas	ORR	63.3%	80.2%	71.9%	
Responses	CRR	51.0%	59.5%	53.1%	
	CRS (G≥3)	18.4% (3.1%)	45.9% (0.8%)	69% (11%)	
Safaty	Neurotoxicity (G≥3)	5.1% (2.0%)	3.2% (0)	3% (3%)	
Salety	G≥3 neutropenia	20.4%	Not reported*	51%	
	G5 adverse events	3%	7%	95	
	Median follow-up	23.9 months	20.4 months	8.2 months	
Outcomes	PFS, months	11.4 (95% Cl: 6.2–18.7)	10.4 (95% Cl: 7.0–23.5)	Not reported	
	DoCR	NR (20.5–NR)	NR (12-month: 72.9%)	NR (95% CI: not reported)	

CAR, chimeric antigen receptor; ORR, overall response rate; CRR, complete response rate; G, grade; PFS, progression-free survival; DoCR, duration of complete response; NR, not reached. * The incidence of G≥3 neutropenia had been 29.7% in an earlier report (n=11)

Hutchings et al. ASH 2023; Budde et al. ASH 2023; Linton et al. ASH 2023

Moving BsAb to the 1st line: Epcoritamab + R-CHOP in high-risk DLBCL defined by an IPI ≥3

Patients (%)

Characteristic	N=47
Median age, y (range)	64 (19–82)
IPI score, n (%)	
3	33 (70)
4–5	14 (30)
MYC/BCL2/BCL6 rearrang n (%)	
Double-hit	6 (13)
Triple-hit	5 (11)

Falchi L et al. ICML 2023. Abstract 135.

Moving BsAb to the 1st line: Glofitamab + R-CHOP in high-risk DLBCL defined by on-treatment ctDNA levels

Key inclusion criteria	Endpoints	ctDNA analysis				
 1L CD20+ LBCL ECOG PS 0-2 IPI 0-5 IPI o for patients with bulky disease IPI 1-5 for non-US patients IPI 2-5 for patients in the US 	 Primary endpoint is CR at EOT as determined by investigator Secondary endpoints include ORR at EOT and safety and tolerability 	 ctDNA levels were measured at C1D1 and at C2D1 (AVENIO Oncology Assay for Non-Hodgkin's Lymphoma)¹ ctDNA high-risk patients: <2-log [100-fold] reduction in ctDNA after one R-CHOP cycle 				
	Dosing and ctDNA assessment schedule					
R-CHOP*	R-CHOP + glofitamab D8: 30mg D8: 30mg 5: 10mg D8: 30mg	Glofitamab Neutropenia mitigation D1: 30mg - C1-6 G-CSF ⁺ CRS mitigation - C3 step-up dosing				
C1 C2	C ₃ C ₄ C ₅ C ₆	EOT – C3 dexamethasone pre- C7–10 Hospitalization was not mandatory				

* R-CHOP: IV rituximab 375mg/m², cyclophosphamide 750mg/m², doxorubicin 50mg/m², and vincristine 1.4mg/m² (max. 2mg) on D1, plus oral prednisone 100mg once daily on D1–5. * Mandatory.

C, cycle; CR, complete response; CRS, cytokine release syndrome; D, day; ECOG PS, Eastern Cooperative Oncology Group performance status; EOT, end of treatment; G-CSF, granulocyte-colony stimulating factor; ORR, overall response rate.

n (%), unless stated	N=29		
Median age, years (range)	62.0 (39.0–77.0)		
Ann Arbor stage III–IV	23 (79.3)		
IPI score 3-5	12 (41.3)		
DLBCL category ⁺ DH TH	2 (6.9) 6 (20.7)		
Cell of origin (local) GCB ABC [‡] Unclassified Unknown	12 (41.4) 8 (27.6) 5 (17.2) 4 (13.8)		

⁺Locally tested.

٠

٠

* Determined by gene expression profiling.

ABC, activated B cell; DH, double-hit; GCB, DLBCL, diffuse large B-cell lymphoma; germinal center B cell; TH, triple-hit.

INV-assessed interim and EOT response rates*

All patients who achieved CR are still in remission

Falchi et al. ASH 2023

Memorial Sloan Kettering Cancer Center

Understanding and Overcoming Resistance to CD2oxCD3 BsAbs

Overcoming resistance to CD20xCD3 bispecific antibodies

Modified from Falchi L et al. Blood. 2023;141(5):467-480.

JNJ-80948543: CD79b x CD20 x CD3 trispecific Ab for B-NHL

JNJ-80948543: Structure and MoA

Broader antigen targeting (T-cells from healthy donors)

Effect on Tumor Cells Expressing CD79b and/or CD2o

T-cell Redirection Assays; E:T ratio 5:1

Kuchnio A et al. ASH 2022. Abstract 1342.

RO7443904 (CD19 x CD28 co-stimulatory Ab) + glofitamab: Preclinical activity

Humanized NSG mice (7-8mice/group) implanted with WSU-DLCL2 Fluc lymphoma cells i.v. and treated once weekly i.v. with glofitamab (0.15mg/kg) or CD19-CD28 (1mg/kg) in monotherapy or with the combination starting on day 3. Tumor growth was recorded with BLI measurement.

Humanized NSG mice were inoculated s.c. with WSU-DLCL2 lymphoma cells and received obinutuzumab followed by glofitamab (0.15mg/kg) alone or with CD19-CD28 (1mg/kg). Tumors were harvested 8 days later

IF in tumors for CD8+CD28+ human T cell frequencies at 6 days after treatment with glofitamab alone or with CD19-CD28(1mg/kg)

IPH6501: First-in-class tetraspecific targeting CD20 developed for the treatment of B-cell malignancies

*IL-2v: IL-2 variant deprived of CD25 (IL-2Rα) binding to limit Treg activation and CD25 associated toxiciy

Summary

- BsAb are a critically important addition in R/R LBCL:
 - Consistent efficacy results with predictable safety
 - Possible curative potential? Additional follow up needed
 - These data will help inform treatment sequencing in the R/R setting
- When?
 - BsAbs are emerging as key 3L option in CD20+ LBCL (optimal sequencing with CAR-T in 3L+?)
 - Ideal role may be as part of 1L therapy
 - To be addressed in ongoing Phase 3 trials
- How?
 - CRS mitigating strategies, multidisciplinary management, patient education as pillars of safe implementation of BsAbs in the clinic
 - Fully outpatient administration for selected (low CRS risk) patients
- Unmet needs:
 - CD20-negative relapse
 - T-cell exhaustion
 - "Double" CAR-T and BsAb resistant lymphoma

