Follicular Lymphoma – Is there a standard first-line treatment?

Brad Kahl, MD

NCCN National Comprehensive Cancer Network®

Disclosures

- Consulting
 - Genentech/Roche, ADC Therapeutics, Abbvie, AstraZeneca, BeiGene, Celgene/BMS, Kite, Genmab, Lilly, GSK
- Research Funding
 - Genentech/Roche, Abbvie, AstraZeneca, BeiGene

Follicular Lymphoma

- 2nd most common non-Hodgkin lymphoma in The United States
 - ~ 20,000 new cases/year
- Incidence increases with age
 - Median age 6th decade of life
- Prototype of "low grade" lymphomas
 - Indolent course with median survival 15+ yrs
 - Spontaneous remissions possible
 - Incurable?
 - Many patients may be "functionally cured"
- Risk of transformation over time

2-3% per year

FL Treatment Issues

- Cure is unlikely, so need different goals
 - Management, control, etc...
- Prognosis is quite good
 - Median OS exceeding 15 years
- Many effective treatment options
 - Can make decision making difficult
- Patient specific issues are important
 - Age, co-morbidities, coping style, FL risk-factors
- Don't want to overtreat, don't want to undertreat
 - Goldilocks principle

How to assign "risk" to a newly diagnosed patient

- 1. FLIPI
 - Predicts OS
- 2. FLIPI 2
 - Predicts PFS to immunochemotherapy
- 3. M7 FLIPI (mutations of 7 genes plus FLIPI)
 - Predicts FFS to R-CHOP
- 4. Gene Expression Profiling
 - Predicts PFS to R-CHOP

Turns out, none of these are very good at predicting who is likely to die from their FL

Other Tools

- Tumor grade
 - 1-2, vs. 3a vs. 3b
 - Can help guide your treatment selection

- GELF criteria
 - Developed to identify appropriate W&W candidates
 - Can help guide the timing of treatment

GELF Criteria

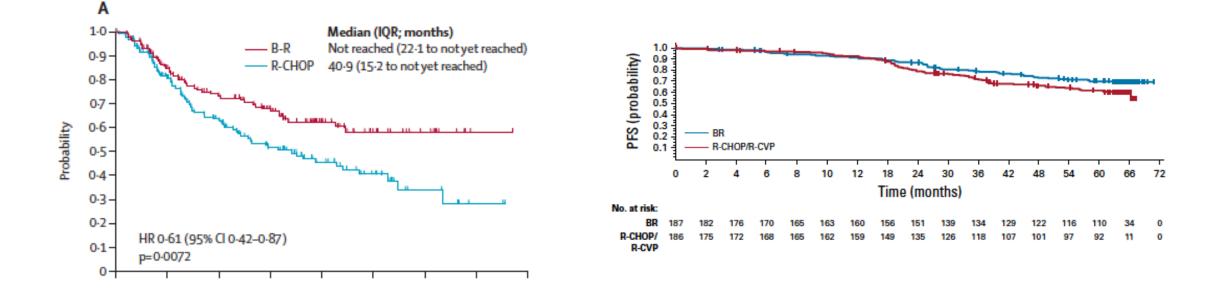
- 3 nodes greater than 3 cm
- Single node greater than 7 cm
- Compression or risk of compression of vital organ
- Significant serous effusions
- Cytopenias due to marrow infiltration
 - Hgb <10, ANC < 1.5, Plts < 100k
- Splenomegaly greater than 16 cm
- Elevated LDH or B2M

A Way to Approach a Newly Diagnosed Patient

	Low Tumor Burden	High Tumor Burden
Symptoms absent	Watch & Wait vs. Single agent rituximab	R-chemo +/- MR vs. Watch & Wait
Symptoms present	Single agent rituximab vs. R-chemo	R-chemo +/- MR

High Tumor Burden FL: Decisions to Make

- 1. Which chemotherapy backbone?
- 2. Which MoAb?
- 3. Whether to use maintenance?


I typically use Bendamustine plus Rituximab with no maintenance but equally reasonable to choose

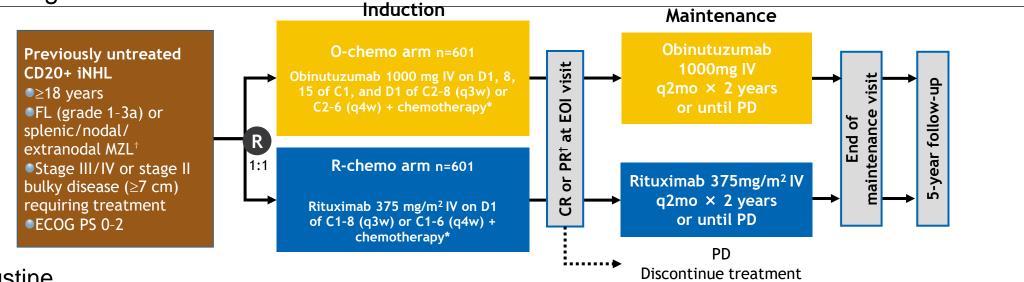
- Bendamustine + Obinutuzumab
- R-CHOP
- O-CHOP

BR vs. R-CHOP

StIL Trial: Median f/u 45 months

BRIGHT Trial: Median f/u 65 months

Rummel et al, Lancet 2013

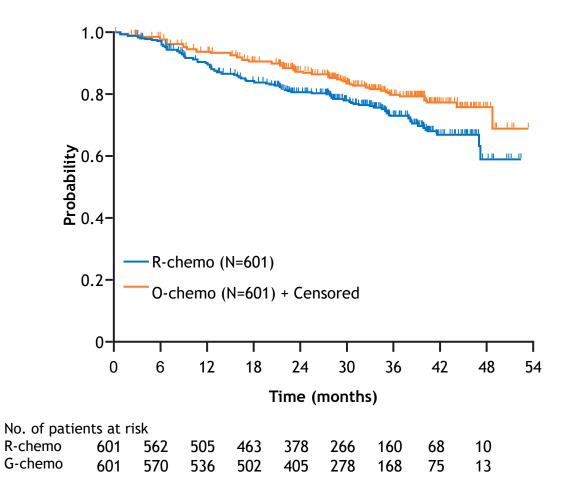

Flinn et al, JCO 2019

Results not completely congruent

- BR better than R-CHOP in StIL
 - Much longer PFS
 - No maintenance rituximab administered
 - Less toxic in short term
- BR roughly equivalent to R-CHOP in BRIGHT
 - PFS not statistically better (trend towards better, certainly not worse)
 - About 50% of patients received maintenance rituximab
 - Toxicity tradeoff in short term.
- OS similar in both
- I have found bendamustine easier to deliver than CHOP in FL

GALLIUM: A test of MoAbs

Study Design


Bendamustine CHOP

CVP

Primary endpoint	PFS [‡] by investigator in FL patients
Secondary endpoints	PFS [‡] by investigator in iNHL; PFS [‡] by IRC, ORR/CR [‡] at EOI by investigator and IRC (+/- FDG-PET), OS, EFS, DFS, DoR, TTNT, safety and PROs (FACT- Lym, EQ-5D) in iNHL and FL

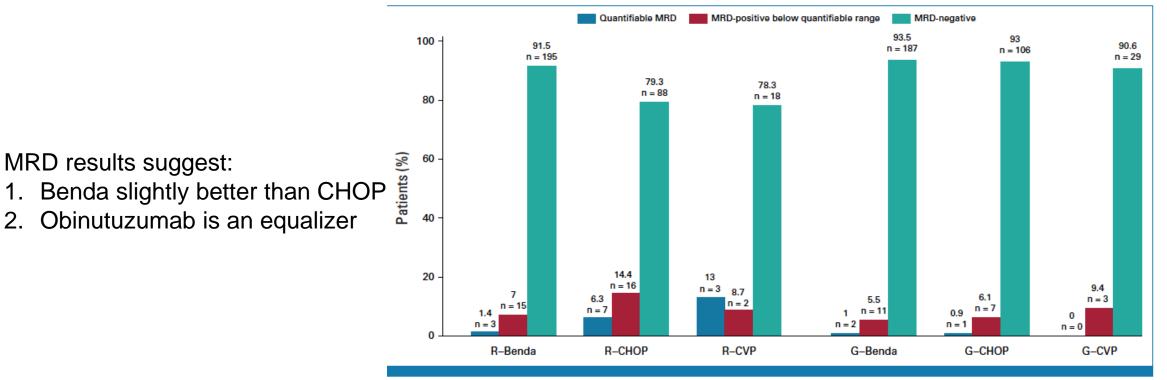
GALLIUM Primary Endpoint: Investiga

Primary Endpoint: Investigator-Assessed PFS in FL

PFS by investigator	O-chemo (n=601)	R-chemo (n=601)
Events, n (%)	101 (16.8)	144 (24.0)
3-year PFS, % (95% CI)	80.0 (75.9, 83.6)	73.3 (68.8, 77.2)
Median PFS, months (95% CI)	Not reached	Not reached
Stratified HR (95% Cl), p-value	0.66 (0.51, 0.85) p=0.001	

Marcus et al, NEJM 2017

GALLIUM Conclusions

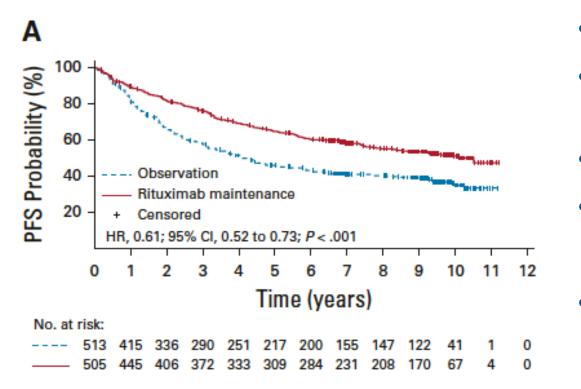

- Is Obinutuzumab a better anti-CD20 MoAb than Rituximab?
 - Appears superior in CLL
 - Not better in DLBCL (see GOYA results)
- In Follicular Lymphoma
 - PFS better with O-chemo. No OS difference
- Are the positive results simply a function of giving more MoAb?
 - Obinutuzumab patients received approximately 35% more Ab
 - HR for progression reduced by approximately 35%
- Perfectly reasonably to choose obinutuzumab in frontline

Original Reports | Hematologic Malignancy

[®]Minimal Residual Disease Status Predicts Outcome in Patients With Previously Untreated Follicular Lymphoma: A Prospective Analysis of the Phase III GALLIUM Study

Christiane Pott, MD, PhD¹ (); Vindi Jurinovic, PhD^{2,3}; Judith Trotman, MBChB⁴ (); Britta Kehden, PhD¹; Michael Unterhalt, MD, PhD²; Michael Herold, MD⁵ (); Richard van der Jagt, MD⁶ (); Ann Janssens, MD, PhD⁷; Michael Kneba, MD¹; Jiri Mayer, MD, PhD⁸ (); Moya Young, MBBS, MRCP, FRCPath⁹; Christian Schmidt, MD²; Andrea Knapp, PhD¹⁰; Tina Nielsen, MD, PhD¹⁰; Helen Brown, MPhil¹¹ (); Nathalie Spielewoy, PhD¹⁰; Chris Harbron, MPhil¹¹; Alessia Bottos, PhD¹⁰; Kirsten Mundt, PhD¹⁰; Robert Marcus, MD¹²; Wolfgang Hiddemann, MD, PhD²; and Eva Hoster, PhD^{2,3} ()

DOI https://doi.org/10.1200/JC0.23.00838


The Decisions

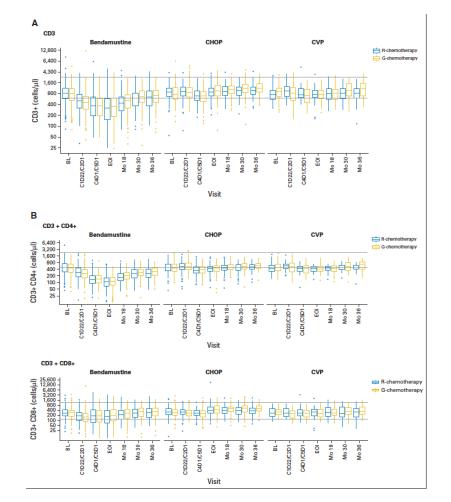
PICK A MONOCLONAL ANTIBODY PICK A CHEMOTHERAPY

Should you give maintenance MoAb therapy?

Maintenance: PRIMA Long Term Follow Up

- Large PFS benefit after R-CHOP/R-CVP
- 20% absolute difference at 5-10 years
- Small benefit in time to next lymphoma therapy
- Slight increase in infections
- No OS benefit
- MR commonly utilized based upon PRIMA data

Salles et al, Lancet 2011. Bachy et al, JCO 2019


Wisdom of maintenance? Toxicity Considerations from GALLIUM

Fatal AE rate:

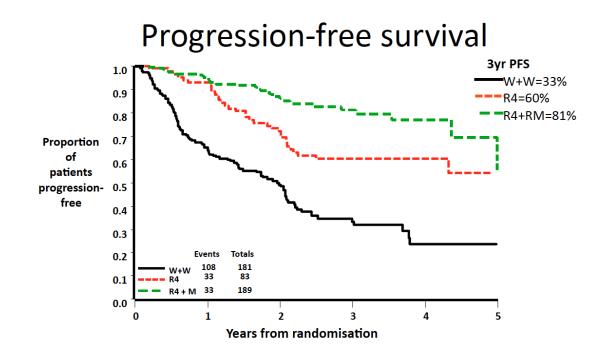
G-Benda: 6.8% R-Benda: 5.1% G-CHOP: 1.6% R-CHOP: 2.5%

	G-chemo		R-chemo			
	Induction	Maintenanc e	Follow-up	Induction	Maintenanc e	Follow-up
Benda	3/338	7/312	10/270	2/338	8/305	5/263
	(0.9%)	(2.2%)	(3.7%)	(0.6%)	(2.6%)	(1.9%)
СНОР	1/193	2/179	0/128	0/203	2/187	2/143
	(0.5%)	(1.1%)	(0.0%)	(0.0%)	(1.1%)	(1.4%)
CVP	0/61	1/57	0/44	1/56	0/43	0/45
	(0.0%)	(1.8%)	(0.0%)	(1.8%)	(0.0%)	(0.0%)

Hiddemann et al, JCO 2018

Significant and prolonged T cell depletion after bendamustine

Wisdom of maintenance MoAb

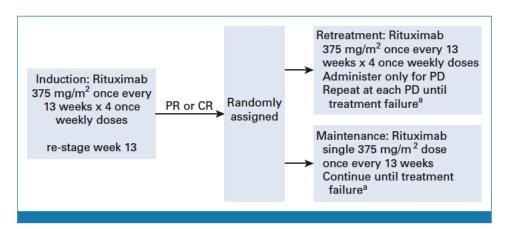

- Prolongs PFS, No impact on OS
- Prolonged B cell depletion was surprisingly low risk, until COVID pandemic
 - We learned (the hard way) the risk with new pathogens
 - Higher mortality from COVID
 - Harder to vaccinate
- Risk/benefit ratio may favor "no maintenance" particularly if using bendamustine
 - Prolonged B cell depletion combined with prolonged T cell depletion
- I am not recommending maintenance at this time

When is single agent rituximab appropriate?

	Low Tumor Burden	High Tumor Burden
Symptoms absent	Watch/Wait vs. single agent rituximab	R-chemo +/- MR vs. Watch/Wait
Symptoms present	Single agent rituximab vs. R-chemo	R-chemo +/- MR

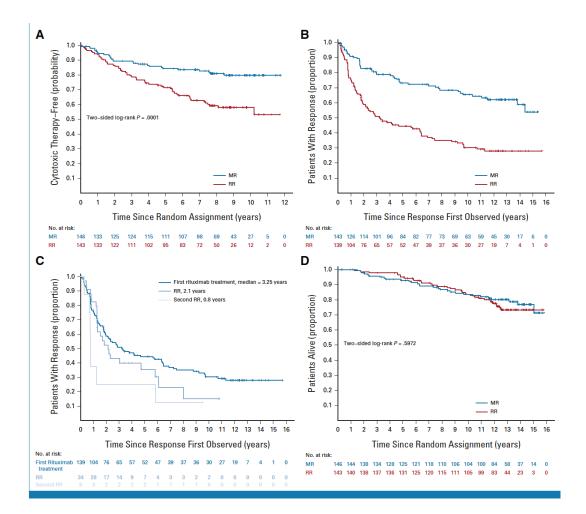
When is it OK to administer single agent rituximab?

UK TRIAL OF R VS WATCH AND WAIT

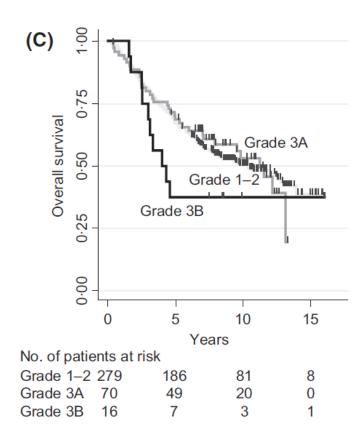

Ardeshna et al, Lancet Oncology 2014

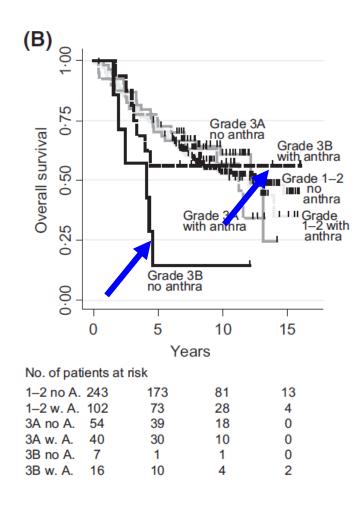
Some guidelines

- Rituximab works best in low tumor burden FL
 - Loses efficacy when nodes > 5 cm
 - Loses efficacy if LDH elevated
- Consider when:
 - Patient elderly, frail, with co-morbidities
 - Patient struggles to cope with W&W
- RESORT trial showed effective to use re-treatment strategy vs. maintenance


Kahl...Williams et al, JCO 2014 & 2024

RESORT: Long Term Follow Up



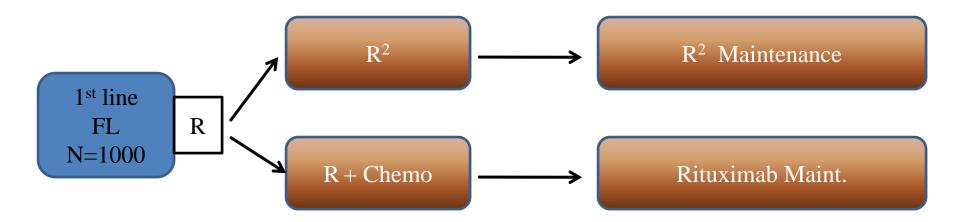

FIG 1. RESORT treatment schema. ^aTreatment failure definition: (1) no response to retreatment or PD within 26 weeks of last rituximab dose, (2) initiation of alternative treatment, and (3) inability to complete the planned rituximab treatment. CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.

Kahl...Williams et al, JCO 2014 & 2024

Special Situations: FL3A: prognosis is similar to FL1-2. FL3B better managed like DLBCL

Favor anthracyclinebased therapy when:

- Grade 3B
- Aggressive
 Presentation
 - High SUV on PET
 - High LDH
 - High Ki67
 - Bony destruction
 - Large effusions
 - Any concern for occult transformation

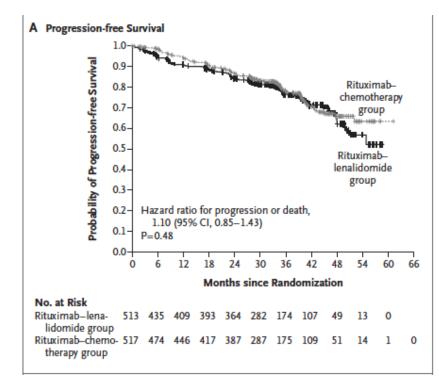

Wahlin Br J Haem 156:225-233, 2011

What would "beating" BR/R-CHOP look like?

- Better PFS at 3-5 years without increased toxicity
- Comparable PFS at 3-5 years with less toxicity
 - BR (with no maintenance) is WELL TOLERATED
- Could just focus on the 10-20% of progressions in 1st two years
 - No biomarkers to accurately identify high risk patients at diagnosis
 - Efforts such of POD24 PI were not precise enough

Novel Approaches to Frontline: RELEVANCE Study Design

(Rituximab and LEnalidomide versus Any ChEmotherapy)



• R+Chemo:

•Investigator's choice of R-CHOP, R-CVP, BR

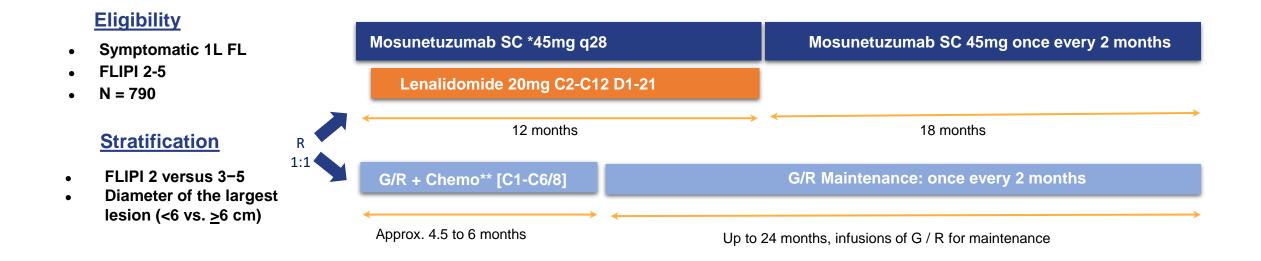
- Lenalidomide 20mg for 6 cycles, then 10mg if CR
- GELA + Selected North American Sites

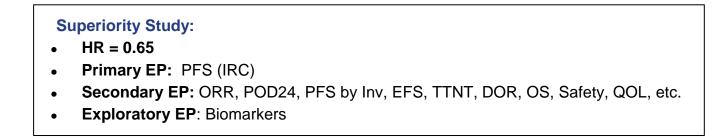
RELEVANCE Results

Adverse Event	Rituximab–Lenalidomide Group (N= 507)		Rituximab–Chemotherapy Group (N=503)	
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4
		number of pat	tients (percent)	
Neutropenia*	381 (75)	160 (32)	386 (77)	252 (50)
Anemia*	333 (66)	0	446 (89)	0
Thrombocytopenia*	268 (53)	11 (2)	266 (53)	8 (2)
Cutaneous reactions†	220 (43)	36 (7)	120 (24)	5 (1)
Diarrhea	187 (37)	10 (2)	95 (19)	6 (1)
Constipation	178 (35)	1 (<1)	167 (33)	5 (1)
Rash	146 (29)	20 (4)	39 (8)	1 (<1)
Fatigue	115 (23)	1 (<1)	147 (29)	4 (<1)
Nausea	100 (20)	0	209 (42)	8 (2)
Abdominal pain	78 (15)	4 (<1)	46 (9)	4 (<1)
Myalgia	73 (14)	0	29 (6)	1 (<1)
Arthralgia	71 (14)	3 (<1)	70 (14)	1 (<1)
Peripheral edema	69 (14)	0	47 (9)	1 (<1)
Muscle spasms	68 (13)	0	21 (4)	0
Infusion-related reaction	66 (13)	7 (1)	56 (11)	1 (<1)
Upper respiratory tract infection	47 (9)	0	55 (11)	0
Vomiting	34 (7)	2 (<1)	94 (19)	7 (1)
Peripheral neuropathy	35 (7)	1 (<1)	79 (16)	3 (<1)
Tumor flare reaction	30 (6)	7 (1)	1 (< 1)	0
Leukopenia	21 (4)	8 (2)	48 (10)	30 (6)
Febrile neutropenia	11 (2)	11 (2)	34 (7)	33 (7)
Tumor lysis syndrome	7 (1)	6 (1)	5 (1)	3 (<1)
Alopecia	5 (1)	0	45 (9)	3 (<1)

Table 3. Adverse Events during the Treatment Period in the Safety Population.

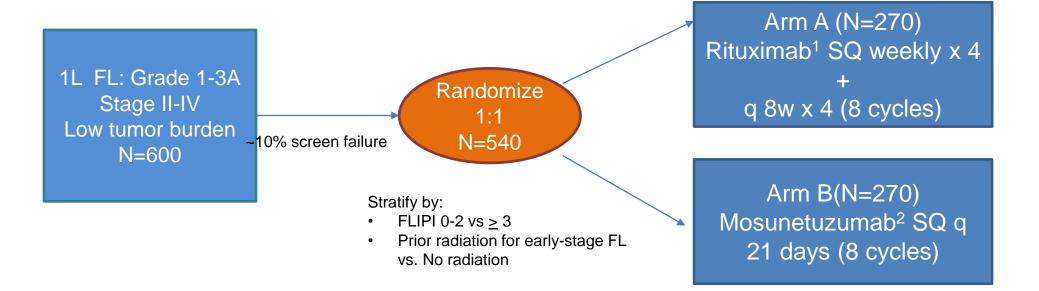
Morschauser et al, NEJM 2018


Lessons Learned


• RELEVANCE

- 1. It is hard to beat BR (or equivalent)
- 2. If RELEVANCE had been designed as a non-inferiority study and achieved frontline approval for R2, the results still would not truly have moved the needle in frontline FL

- We are going to need better drugs, predictive biomarkers, or both
 - 1. Currently no predictive biomarkers except EZH2 mutation tazemetostat
 - 2. Better drugs? Maybe Bi-specific MoAb will pan out.
 - 3. Companies suddenly interested in frontline FL again.


MorningLyte Study Design

*Step up dosing for CRS mitigation during C1: D1 5mg, D8 45mg, D15 45mg ** CHOP or Bendamustine; mAb+chemo regimen \rightarrow dealers choice

S2308: Randomized Phase III Study of Mosunetuzumab vs. Rituximab for Low Tumor Burden Follicular Lymphoma

- ¹ First dose of Rituximab to be administered IV
- ² Mosunetuzumab ramp up in cycle 1

Primary endpoint: 5 year PFS

Future of 1st Line FL

- Will be difficult to show improvement in frontline FL
- BR/BO (without maintenance) is safe and very effective
- R-CHOP/R-CVP is safe and effective (maintenance optional)
- The next frontier of testing appears to be bi-specifics
 - I would prefer time limited exposures

www.siteman.wustl.edu