

Third line therapy in CLL: what are the best options?

Jan Burger, MD PhD

Department of Leukemia University of Texas MD Anderson Cancer Center Houston, Texas USA

Non-Covalent BTKi Overcome BTK C481 Resistance

Pirtobrutinib may stabilize/maintain BTK in a closed inactive conformation⁷

BRUIN: Phase 1/2 Study Design

Baseline Characteristics

Characteristics	Prior cBTKi (n=282)	BCL2i-N (n=154)	BCL2i-E (n=128)
Median age, years (range)	69 (36-88)	69 (36-87)	68 (41-88)
Male, n (%)	192 (68)	106 (69)	86 (67)
Rai staging, n (%)			
0-11	147 (52)	94 (61)	53 (41)
III-IV	120 (43)	58 (38)	62 (48)
Missing	15 (5)	2 (1)	13 (10)
Bulky Lymphadenopathy ≥5 cm, n (%)	88 (31)	42 (27)	46 (36)
ECOG PS, n (%)			
0	144 (51)	89 (58)	55 (43)
1	118 (42)	56 (36)	62 (48)
2	20 (7)	9 (6)	11 (9)
Median number of prior lines of systemic therapy, (range)	4 (1-11)	3 (1-9)	5 (1-11)
Prior therapy, n (%)			
BTK inhibitor	282 (100)	154 (100)	128 (100)
Anti-CD20 antibody	251 (89)	127 (83)	124 (97)
Chemotherapy	228 (81)	114 (74)	114 (89)
BCL2 inhibitor	128 (45)	0 (0)	128 (100)
PI3K inhibitor	71 (25)	17 (11)	54 (42)
CAR-T	17 (6)	2 (1)	15 (12)
Allogeneic stem cell transplant	7 (3)	1 (1)	6 (5)

Characteristics	Prior cBTKi (n=282)	BCL2i-N (n=154)	BCL2i-E (n=128)
Median time from diagnosis to first dose, years (IQR)	11 (8-15)	11 (7-15)	12 (8-15)
Reason for any prior BTKi discontinuation ^a , n (%)		
Progressive disease	217 (77)	110 (71)	107 (84)
Toxicity/Other	64 (23)	43 (28)	21 (16)

Baseline Molecular Characteristics ^b	Prior cBTKi (n=282)	BCL2i-N (n=154)	BCL2i-E (n=128)
Mutation status, n/n available (%)			
BCL2 mutated	19/246 (8)	0/133 (0)	19/113 (17)
BTK C481-mutant	96/245 (39)	57/138 (41)	39/107 (36)
PLCG2-mutant	18/245 (7)	10/138 (7)	8/107 (8)
High Risk Molecular Features, n/n available (%)			
17p deletion and/or TP53 mutation	104/217 (48)	57/123 (46)	47/94 (50)
IGHV unmutated	193/225 (86)	100/125 (80)	93/100 (93)
Complex Karyotype	33/73 (45)	17/41 (42)	16/32 (50)
11q deletion	47/202 (23)	28/115 (24)	19/87 (22)

Pirtobrutinib Effective after cBTKi w/wo Prior BCL2i

BCL2i-N	(n=154) ^b
ORR ^a incl. PR-L, % (95% CI)	83.1 (76.2-88.7)
Best Response, n (%)	
CR	5 (3.2)
nPR	2 (1.3)
PR	108 (70.1)
PR-L	13 (8.4)

BCL2i-E	(n=128) ^c
ORRª incl. PR-L, % (95% CI)	79.7 (71.7-86.3)
Best Response, n (%)	
CR	0 (0)
nPR	0 (0)
PR	88 (68.8)
PR-L	14 (10.9)

PFS with Prior BTKi w/wo Prior BCL2i

OS with Prior BTKi w/wo Prior BCL2i

Conclusions

- With median follow-up of 30 months, pirtobrutinib continues to demonstrate clinically meaningful and durable efficacy in heavily pretreated patients with CLL/SLL who received prior covalent BTK inhibitor
 - ORR including PR-L was ~80% regardless of prior BCL2 inhibitor exposure
 - Median PFS was 19.4 months overall, with 23.0 months for BCL2i-N patients and 15.9 months for BCL2i-E patients
- Pirtobrutinib was well-tolerated with low-rates of discontinuation due to drug-related toxicity among both BCL2i-N and BCL2i-E patients
- These results suggest that continuation of BTK pathway inhibition may be an important sequencing approach to consider in the treatment of CLL/SLL
- On December 1, 2023, the FDA granted accelerated approval to pirtobrutinib for adults with CLL/SLL who
 have received at least two prior lines of therapy, including a BTK inhibitor and a BCL2 inhibitor

Response to Subsequent Therapy Following Initial Kinase Inhibitor Therapy

Reasons for discontinuation first KI				
It	rutinib (<i>n</i> = 258	Idelalisib (n = 5	58	A PFS following KI discontinuation by alternate treatment choices
d	scontinuation events)	discontinuatio	n events)	
Toxicity 5.	.2% (n = 132)	44.8% (<i>n</i> = 26)		0.75
Progression 20).5% (<i>n</i> = 53)	27.6% (<i>n</i> = 16)		0 50 - Median PES = not reached
Other/death not secondary to 1: progression	.% (<i>n</i> = 28)	6.9% (<i>n</i> = 4)		Median PFS = 5.1 months
MD/patient preference 6.	2% (<i>n</i> = 16)	17.2% (<i>n</i> = 10)		0.25 -
Richter's transformation 5.	0% (<i>n</i> = 13)	3.5% (n = 2)		
Stem cell transplant/CAR T 3. cells	9% (<i>n</i> = 10)	0%		0 10 20 30 Months —— KI (Ibr / Ide) —— Venetoclax
	lbrutinib → idelalisib	ldelalisib → ibrutinib	Kinase inhibitor → venetoclax	B PFS with alternate KI: KI intolerance vs. CLL progression
ORR (%)	46	75	74	0.75 -
CR (%)	0	5	32	0.50 - Median PFS = 9 months
PR/PR with lymphocytosis (%)	46	70	42	0.25 -
Stable disease (%)	39	15	16	_
Progressive disease (%)	15	10	10	0-[
			•	0 5 10 15 20 25

Months

CLL Progression

KI intolerance

Mato, AR, et. al, Ann Oncol. 28:1050, 2017

High-dose steroids (+/- CD20) vs. novel agents

PFS

OS

CD20 monotherapy in CLL: obinituzumab

CAR T-cell Therapy

CAR T cell therapy in RR CLL

TRANSCEND CLL 004 Lisocabtagene Maraleucel (liso-cel)

Siddiqi T: Lancet 10402, PP. 641-654, 2023

CAR T cell therapy in RR CLL

TRANSCEND CLL 004 Lisocabtagene Maraleucel (liso-cel)

OS by best response

PFS by MRD

Patients with cytokine release syndrome		
Any grade	99 (85%)	
Grade 1	43 (37%)	
Grade 2	46 (39%)	
Grade 3	10 (9%)	
Grade 4	0	
Grade 5	0	
Time to cytokine release syndrome onset, days*	4 (1–7)	
Time to cytokine release syndrome resolution, days*	6 (4–11)	
Patients with neurological events†		
Any grade	53 (45%)	
Grade 1	13 (11%)	
Grade 2	18 (15%)	
Grade 3	21 (18%)	
Grade 4	1 (1%)	
Grade 5	0	
Time to neurological event onset, days*	7 (4–11)	
Time to neurological event resolution, days*	7 (4–16)	
Tocilizumab and corticosteroid use for cytokine rel	ease syndrome	
Doses of tocilizumab (n=76)	1 (1–2)	
Tocilizumab only	41 (35%)	
Corticosteroids only	2 (2%)	
Both tocilizumab and corticosteroids	35 (30%)	
Tocilizumab or corticosteroids or both	78 (67%)	
Tocilizumab and corticosteroid use for neurologica	levent	
Doses of tocilizumab (n=8)	1 (1-1)	
Tocilizumab only	0	
Corticosteroids only	31 (26%)	
Both tocilizumab and corticosteroids	8 (7%)	
Tocilizumab or corticosteroids or both	39 (33%)	
Other adverse events of special interest		
Prolonged cytopenia‡	63 (54%)	
Grade ≥3 infections§	20 (17%)	
Hypogammaglobulinaemia¶	18 (15%)	
Tumour lysis syndrome	13 (11%)	
Second primary malignancy	11 (9%)	
Macrophage activation syndrome**	4 (3%)	

Lisocabtagene Maraleucel (liso-cel) Toxicity

- Cytokine release syndrome (CRS) 85% (grade 3, 9%; no grade 4/5)
- Neurological events (NE) 45% (grade 3, 18%; grade 4, 1%; no grade 5)
- 69% received tocilizumab and/or corticosteroids for CRS/NEs

OS and PFS in CLL Richter transformation with CAR T cell therapy (n=69)

- Median PFS was 4.7 months
- Median OS was 8.5 months
- 1-year and 2-year PFS rates were 35.7% and 28.9%
- 1-year and 2-year OS rates were 42.9% and 38.3%

BsAbs lacking an Fc portionIgG-like bsAbs(ie. BiTEs, i.e. blinatumomab)(i.e. epcoritamab)

BsAbs without an Fc domain exhibit rapid clearance and necessitate continuous infusion

Current bispecific CLL clinical trials

Phase (Study name)	Country (State_if in USA)	Bispecific product/ Target	Population	Comment	Clinicaltrials.gov ID#
1/2	Australia, Belgium Denmark, France, Germany, Netherlands, Spain, USA (many)	Epcoritamab CD20/CD3	Age ≥18 r/r CD20+ CLL at least 2 prior lines, or RT	Monotherapy, or in combination with venetoclax, lenalidomide, or R-CHOP.	NCT04623541
1/2	Australia	GB261 CD20/CD3	Age \geq 18 CD20+ r/r B-NHL or CLL/SLL		NCT03960840
1	UK	NVG-111 ROR1/CD3	Age ≥18 R/r ROR1+ malignancies, CLL/SLL, MCL, FL, DLBCL (excludes RT)		NCT04763083
1	USA (AK, NJ, TN, TX)	TG-1801 CD47/CD19	Age ≥ 18 R/r B-NHL including RT, CLL		NCT04806035
2	USA (CA)	Mosunetuzumab CD20/CD3	Age ≥ 18 R/r high -grade B-cell lymphomas including RT	In combination with Loncastuximab Tesrine Not for CLL/SLL without transformation	NCT05672251

Abbreviations: B-ALL = B-cell acute lymphoblastic leukemia; CLL = chronic lymphocytic leukemia; Co-exp = co-expression; IL = interleukin; IL-2BR = Interleukin-2 β receptor; MCL = mantle cell lymphoma; MM = multiple myeloma; NHL = Non-Hodgkin's lymphoma; r/r = relapsed/refractory; R-CHOP = rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone chemoimmunotherapy regimen; RT = Richter's transformation; SLL = small lymphocytic lymphoma; UK = United Kingdom; USA = United States of America (States indicated by their 2-letter postal abbreviations).

CLL risk stratification for HSC in the era of novel agents

Refractoriness to	TP53 abnormality present (del17p/TP53 ^{mut})	High risk Category
CIT only	yes	I – CIT-resistant (BTKi- and BCL2i-sensitive)
CIT + BTKi or CIT + BCL2i or BTKi + BCL2i (+/- CIT)	yes or no	II – CIT- and PI- resistant (BTKi- and/or BCL2i- refractory)

Outcome of HCT based on risk category

Dreger P: Cancer J 27: 297-305, 2021

Abbreviations:

- HR I/II: high risk category
- PI: pathway inhibitor
- CI: Cellular immunotherapy

Outcome of 90 allografted patients after SCT

Dreger P: Blood 116 (14): 2438-2447, 2010

AlloHSC in CLL

 Number of novel agents prior to alloHCT do not impact survival HSC comorbidity index predicts PFS PFS is not impacted by highrisk disease characteristics

Thank you!

Jan Burger, MD PhD

jaburger@mdanderson.org

