

O que me influencia na escolha da terapia em primeira linha no Linfoma Folicular?

Rafael Gaiolla

Professor de Hematologia

Faculdade de Medicina de Botucatu - UNESP

Declaração de Conflitos de Interesse

• Sem conflitos de interesse a declarar

Follicular Lymphoma - Overview

- Remarkable improvements in FL survival in the past decades (= addition of anti-CD20 antibody)
- Although FL is still considered incurable, most patients can reach a normal life expectancy
- In general:
 - ✓ Complete remission of nearly 70%
 - ✓ Median PFS of 6-7 years
 - ✓ Median survival 15-20 years

Maurer MJ et al. Am J Hematol 2016 Magnano L et al. Br J Haematol 2019 Tan D et al. Blood 2013 Bruna R et al. Haematologica 2019

What Are the Goals For FL Treatment?

- Although largely used, PFS is limited as a marker of clinical benefit
- The main goal in FL is to achieve and maintain a good quality of life
- The choice of treatment should be "personalized" and consider:

First-Line Treatment in FL (Symptomatic Disease)

Study	Evaluated Regimens	Results	Observations
FOLL05 (N = 504)	R-CHOP vs R-CVP vs R-FM	PFS at 8 years - R-CHOP ~ R-FM = 52% - R-CVP = 41% (p=0.003) OS at 8 Years = 83%	 R-FM more toxic, more secondary neoplasms R-CVP less effective
STiL (N = 514)	R-CHOP vs BR	 - BR improved mPFS: 69 x 31 mo - BR >> TTNT - OS at 10 Years = 93% vs 91% 	 BR less toxic More skin reactions with BR Included other lymphoma subtypes (MCL, MZL)
BRIGHT (N = 447)	R-CHOP / R-CVP vs BR (non-inferiority for BR)	PFS at 5 years - R-CHOP/R-CVP = 55,8% - BR = 65,5% (p=0.025) - OS at 5 Years = 81,7% e 85% (p=NS)	 Comparable toxicity Included other lymphoma subtypes (MCL, MZL)

Federico M et al. J Clin Oncol 2013 / Luminari S et al. J Clin Oncol 2018 / Rummel MJ et al. Lancet 2013 / Rummel MJ et al. J Clin Oncol 2019 Flinn IW et al. Blood 2014 / Flinn IW et al. J Clin Oncol 2019

Monoclonal Antibody Dilemma: R or G?

GALLIUM Study – Final Analysis with 8-year follow-up

	(N=601)	(N=601)				
7-year PFS	63,4%	55,7 [%]	HR 0,77 (95%Cl 0,64-0,93, p=0,006)			
7-year OS	88,5%	87,2%	HR 0,86 (95%Cl 0,63-1,18, p=0,36)			
Obinutu	Obinutuzumab Arm:					
 Higher incidence of neutropenia 						
 Higher incidence of Grade 3-5 febrile neutropenia 						
 Higher incidence of SAEs (48,9% x 43,4%) 						
More	 More deaths with Benda-Obinu 					

D chama

O chama

Chemo-Free Approach: the RELEVANCE Trial

R2 versus R-Chemo + R-maintenace (6-years follow-up)

N = 1030 patients, grades 1-3a FL

	R-chemo	R ²	Р
CR / CRu	53%	48%	0,1
PFS 5a	59%	60%	0,78
OS 5a	89%	89%	0,1

No diferences in histologic transformation or POD24

Morchhauser F et al. N Eng J Med 2018 / Morchhauser F et al. J Clin Oncol 2022

Treatment Options in FL – Pros and Cons

Drugs	Pros	Cons
СНОР	Excellent long-term disease control High OS rates	Hematological toxicity Anthracycline-related toxicity
CVP	Less toxic High OS rates	Inferior disease control Higher chances of a new treatment
Bendamustine	At least equal to CHOP for disease control Less hematological toxicity High OS rates	T-cell depletion Higher incidence of 2nd neoplasia? More infections (elderly)
Lenalidomide	Chemo-free approach Efficacy is comparable to CHOP	Specific AE (rash, fatigue,↓neutro) Higher cost
Rituximab	Excellent long-term disease control, high OS rates Favourable toxicity profile	个 infections when used as maintenance
Obinutuzumab	More "potent" than R (higher rates of DRM-) Increases PFS compared to R	More SAE (IRR, infections) Higher cost Modest PFS gain, no difference in OS

Hiddemann W et al. J Clin Oncol 2018 / Morchhauser F et al. N Eng J Med 2018 / Flinn IW et al. Blood 2014 / Rummel MJ et al. Lancet 2013 / Federico M et al. J Clin Oncol 2013 / Luminari S et al. J Clin Oncol 2018

What 1L Treatment Should I Choose?

Theory: "Consider your patient's characteristics and treatment goals and pick the one you feel more comfortable with."

Reality: "Well...lots of caveats to consider"

Important Questions for Daily Clinical Practice

- How far should I go in older/frail patients?
- How far should I go in young patients? Does more potency mean more efficacy?
- Should Grade 3A FL be managed differently?
- Does the FDG-uptake interfere with treatment choice?
- Can we predict POD24 or HT and modify the 1L treatment strategy?

How do these questions affect my treatment choice?

Treatment Toxicity in FL – Lessons Learned

Anthracyclin	Obinutuzumab	Bendamustine
 Higher rates of grade 3-4 AEs Diven by ↑ hematological toxicity 5-10% will develop clinical cardiopathy 20-30% with subclinical alterations 	 More toxic than Rituximab (GALLIUM) Higher rates of SAE: 49% x 43% Higher rates of grades 3-5 Aes: neutropenia (47% x 40%) febrile neutropenia (7.6% x 4.7%) Higher rates of grade ≥ 3 infusion-related reactions (12% x 7%) 	 Higher rates of infections Higher cumulative incidence of bacterial, viral, fungal, and opportunistic infections Higher incidence of serious infections More fatal events in patients ≥ 70 years during and after treatment (13% versus 2-4% with CHOP/CVP) Delayed CD4 recovery (~2 y)

Combining B plus G Potencially Increases the Risk of Infections

Grade 3–5 infections and grade 3 and 4 neutropenia adverse events by treatment arm and chemotherapy regimen in the follicular lymphoma safety population

Number (%) of patients reporting ≥ 1 AE	Obinutuzumab + bendamustine	Rituximab + bendamustine	Obinutuzumab + CHOP	Rituximab + CHOP	Obinutuzumab + CVP	Rituximab + CVP
Grade 3–5 infections						
All study periods	89/338 (26)	66/338 (20)	23/193 (12)	25/203 (12)	8/61 (13)	7/56 (13)
Induction	27/338 (8)	26/338 (8)	14/193 (7)	13/203 (6)	3/61 (5)	4/56 (7)
Maintenance	51/305 (17)	39/300 (13)	7/178 (4)	11/186 (6)	5/57 (9)	1/40 (3)
Observation/follow-up	28/319 (9)	12/316 (4)	3/184 (2)	6/195 (3)	1/58 (2)	3/53 (6)
Grade 3 and 4 neutropenia						
All study periods	100/338 (30)	102/338 (30)	137/193 (71)	111/203 (55)	28/61 (46)	13/56 (23)
Induction	73/338 (22)	87/338 (26)	124/193 (64)	103/203 (51)	24/61 (39)	13/56 (23)
Maintenance	49/305 (16)	29/300 (10)	37/178 (21)	26/186 (14)	5/57 (9)	2/40 (5)
Observation/follow-up	6/319 (2)	1/316 (1)	4/184 (2)	1/195 (1)	1/58 (2)	0

Abbreviations: AE, adverse event; CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone; CVP, cyclophosphamide, vincristine, and prednisone.

Younger patients: More potency, better results?

CHOP CVP 1.0 1.0 0.8 0.8 BIIII BE BE I B B B Probability Probability 0.6 0.60.4 0.4 R-CHOP R-chemo 0.2 0.2 G-CHOP G-chemo Censored + Censored 0 0 0 12 24 36 48 60 60 0 12 24 36 48 Time (months) Time (months) Number at risk Number at risk R-CHOP 203 187 171 131 38 57 43 33 10 0 R-CVP 41 36 196 179 170 121 57 55 41 11 G-CVP 60 0

Time to a new anti-lymphoma treatment

- No differences for R-CHOP vs. O-CHOP
- O-Benda superior to R-Benda
- Remember: O-Benda more toxic, even for the youngers!

However...

- The study was not powered to assess differences in outcomes between the chemo groups
- Chemo groups were non-randomized

Hiddemann W et al. J Clin Oncol 2018

POD24 and Histological Transformation – Are They Related?

RWD from the British Columbia

- 13% of POD24
- 76% of POD24 with confirmed TH

The Lymphoma Epidemiology of Outcomes (LEO)

POD24 FL/ indeterminate or no biopsy 5-year OS 71-75%

- N=1222 FL (308 early relapses)
- 17% with POD24 and HT
- 52% with POD24 FL

Freeman CL et al. Blood 2019 Casulo C, et al. ASH 2024 abstract #1652

Known Risk Factors for Transformation

Risk Factors from multivariate analyses

FLIPI Score \geq 3

- Age > 60
- Advanced stage
- Hb <12g/dL
- 4 nodal areas
- Elevated LDH

Grade 3A FL

> 1 extranodal site

Age at diagnosis

Elevated LDH (baseline or anytime during treatment)

PET-CT SUV (controversial)

Sarkozy C, et al. J Clin Oncol 2016 Wagner-Johnston ND, et al. Blood 2015 Conconi A, et al. Br J Haemtol 2012 Ginne E, et al. Ann Oncol 2006 Link B, et al. J Clin Oncol 2013 Noy A, et al. Ann Oncol 2009 Li Z-W, et al. Cancer 2024

Risk Assessment Tools are Limited to Predict POD24

	Components	Risk groups	Survival	POD24
FLIPI	Age; stage; Hb; LDH; nodal sites	Low: 0–1 Intermediate: 2–3 High: 4–5	Low: 92% Intermediate: 90% High: 67%	Low/Intermediate: 4%-6% High: 7%-14%
FLIPI2	B2M; diameter lymph node; BMI; age	Low: 0 Intermediate: 1–2 High: 3–5	Low: 91% Intermediate: 69% High: 51%	
PRIMA-PI	B2M; BMI	Low: B2M ≤ 3, no BMI Intermediate: B2M ≤ 3 with BMI High: B2M > 3	Low: 69% Intermediate: 55% High: 37%	Low: 5% Intermediate: 7% High: 12%
FLEX	Male sex; sum of lesion dimension; grade 3A; extranodal sites; ECOG; Hb; B2M; NK cell count; LDH	Low: 0–2 High: 3–9	Low: 86% High: 68%	Low: 5% High: 8%
m7-FLIPI	FLIPI; ECOG; mutation status of 7 genes (ARID1A, CARD11, CREBBP, EP300, EZH2, FOXO1, MEF2B)	Low: <0.8 High: >0.8	Low: 77% High: 38%	Low: 7% High: 17%
POD24-PI	High-risk FLIPI; mutation status of 3 genes (EP300, EZH2, FOXO1)	Low: <0.71 High: >0.71	Low: 77% High: 50%	Low: 4% High: 14%

BMI, body mass index; Hb, hemoglobin.

*FLIPI24: age, hemoglobin, white blood cell count, LDH, and B2M

- Identified poor outcomes among patients with a high/very high-risk score
- Median EFS 1.8 years (95% CI, 1.3-3.28)
- 5-year OS of 65% (95% CI, 55.9-75.8)

Driving Decisions in Clinical Practice

Biomarkers

- ctDNA not yet available for routine use
- TMTV / SUVmax potential role, but controversial results

1. Good-quality diagnostic biopsy

- Preferably driven by PET findings
- > 1 site of biopsy if needed
- Experienced hematopathologist

2. Clinical and lab findings

- FL behavior = "kinetics"
- B-symptoms
- Altered Labs (especially LDH)

Mir F, et al. Blood 2020 Strati P, et al. Haematologica 2020 Mondello & Casulo. Hematology 2024

Can We Rely on Clinical Criteria for HT Suspicion?

	Clinical (n = 63)		Histologic $(n = 107)$	
Criteria for Diagnosis of Transformation	No.	%	No.	%
Elevated LDH	34	54	53	49
Rapid nodal growth	62	98	98	91
Extranodal, excluding BM	46	73	42	39
New B symptoms	17	27	32	30
New hypercalcemia	4	6	1	0.9

Abdulwahab J et al. J Clin Oncol 2008 Wagner-Johnston ND, et al. Blood 2019

Guiding 1L Treatment Choice in FL (*High Tumor Burden*)

FL scenario	Treatment Choice	Comments	
<70 Years "usual" clinical presentation	R-Benda R-CHOP	If Benda is the choice: - PJP and zoster profilaxis - Monitor CD4 every 3 months until ≥ 200	
≥70 Years	R-CVP R-mini-CHOP	 R-mini-CHOP if aggressive presentation Avoid Benda or consider dose reduction (70mg/m²) Consider R-mono if frail 	
<70 Years Aggressive behavior	R-CHOP	- Consider R-mini-CHOP according to PS	
When do I choose Obi?	 Rarely Can be considered in younger patients, when a PFS gain is the main goal Be careful if combined with Benda (use only in young and fit patients) 		
When do I choose R ²	 Never Not approved in Brazil as 1L Higher cost Could be considered if the patient is not suitable for chemo 		

Obrigado!

rafael.gaiolla@unesp.br

