

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 1 of 70

JOSLYN PHASE 2, SAGD FACILITY

Design Basis Memorandum

No	Revision	By	Date	Appr.	Date	Client	Date
0	DRAFT	STA	March 16, 2004	WJC	March 17, 2004		
1	Issued for Approval	DJW	March 31, 2004	STA	April 1, 2004		
2	Oct. 2004 Issue	DJW	Oct. 19, 2004	STA	Oct. 19, 2004		
3	March 2005 Issue	STA	March 18, 2005				

The information contained in this document is confidential in nature and may not be reproduced, used or transmitted in any way without prior written consent from Bower Damberger Rolseth Engineering Ltd.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 2 of 70

TABLE OF CONTENTS

1.0 INTRODUCTION

- **1.1 Abbreviations and Definitions**
- **1.2 Project Description**
- **1.3 Project Objectives**
- **1.4 Operations Criteria**
- 1.5 Oil Process
- **1.6 Water De-oiling**
- **1.7 Water Treatment**
- **1.8 Steam Generation**
- **1.9 Water Disposal**

2.0 DESIGN BASIS

2.1 Site Conditions

2.2 Fluid Parameters

2.3 Mechanical

- Pipeline 2.3.1
- 2.3.2 Main Facility
- 2.3.3 Wellsite Facilities
- 2.3.4 Valves and Piping (Facilities)
- 2.3.5 Valves and Piping (Wellheads)
- Painting and Internal Coating System 2.3.6
- 2.3.7 Skid Design
- 2.3.8 Rack Design

2.4 Electrical

- 2.4.1 Voltages
- 2.4.2 Project Load
- Power Supply 2.4.3
- 2.4.4 Emergency Generation
- Main Facility Distribution 2.4.5
- 2.4.6 480V Motor Control Centers (MCCs)
- Un-Interruptible Power Supply (UPS) Systems 2.4.7
- 2.4.8 Lighting
- 2.4.9 Electric Heat Tracing
- 2.4.10 Motors
- 2.4.11 Cables
- 2.4.12 Installation
- 2.4.13 Spares

2.5 Instrumentation and Control

- Instrumentation/Operational Philosophy 2.5.1
- 2.5.2 **Control System**
- Metering and Meter Proving 2.5.3
- 2.5.4 Instrument Air System
- 2.5.5 **SCADA**

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 3 of 70

2.6 Safety

- 2.6.1 **Fire Suppression**
- Miscellaneous Safety Equipment 2.6.2
- 2.7 Civil
 - 2.7.1 **Equipment Foundations**
 - **Buildings** 2.7.2
 - 2.7.3 Tanks

3.0 PROJECT ENGINEERING & MANAGEMENT

3.1 Mechanical Detailed Engineering Scope of Work

- Wellhead Facilities 3.1.1
- 3.1.2 Pipelines
- 3.1.3 Main Facility

3.2 Electrical Detailed Engineering Scope of Work

- 3.2.1 Electrical Front End Engineering & Design
- 3.2.2 Equipment Specifications
- 3.2.3 Electrical Drawings & Specifications

3.3 Civil Detailed Engineering Scope of Work

- 3.3.1 Civil Specifications
- 3.3.2 Civil Drawings
- 3.4 Other Detailed Engineering Scope of Work
- **3.5** Procurement
- **3.6 Construction Management**
- **3.7 Deliverables**

4.0 PROJECT RISKS

- 4.1 Skilled Labour
- 4.2 Major Equipment
- 4.3 Raw Material Price Fluctuations
- 4.4 Environmental
- 4.5 Water Supply
- 4.6 Scope Creep

5.0 TECHNICAL GUIDELINES

5.1 Codes and Standards

- 5.1.1 General
- 5.1.2 Mechanical
- 5.1.3 Electrical
- 5.1.4 Civil
- Environmental 5.1.5

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 4 of 70

6.0 APPENDICES

- I Process Flowsheet (Well Pad)
- II Process Flowsheet (Oil Treating)
- III Process Flowsheet (Water and Steam)
- IV Process Flowsheet (Glycol)
- V Well Pad Conceptual Plot Plan
- VI Site Plot Plan
- VII Bitumen, Produced Water, Gas, SCO, and Source Water Analyses
- VIII Area Development Plan
- IX Piping Materials and Valve Specifications
- X AFE Summary and Cost Estimate Notes
- XI Pipeline Cost Estimate
- XII Well Pads Cost Estimates
- XIII Main Facility Cost Estimate
- XIV Bitumen/Water Emulsion Viscosity Curves and Bitumen/SCO Blends
- XV Area Classification Plan
- XVI Overall Single Line Diagram
- XVII Project Load Summary
- XVIII Control Architecture
- XIX Project Schedule
- XX Material Balance (Oil Process)
- XXI Material Balance (Water)
- XXII Project Execution Plan

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 5 of 70

1.0 INTRODUCTION

1.1 Abbreviations and Definitions

1.1.1 The abbreviations and definitions below have been listed in alphabetical order wherever possible.

°C	Degrees Celsius
°F	Degrees Fahrenheit
AEUB	Alberta Energy and Utilities Board
ANSI	American National Standards Institute
API	American Petroleum Institute
ASME	American Society of Mechanical Engineers
BDR	Bower Damberger Rolseth Engineering Ltd.
BPD	Barrels per Day
BS&W	Basic Sediment & Water
CFM	Cubic feet per minute
Ckt	Circuit
cP	Centipoise
CSA	Canadian Standards Association
cSt	Centistoke
c/w	Complete with
CWE	Cold Water Equivalent
DAF	Dissolved Air Flotation
DBM	Design Basis Memorandum
DCEL	Deer Creek Energy Limited
EEMAC	Electrical Equipment Manufacturers Association
EPEA	Environmental Protection and Enhancement Act
ESD	Emergency Shutdown Valves
FVNR	Full Voltage Non-Reversing
HMI	Human Machine Interface
Нр	Horsepower
Hz	Hertz (frequency)
IFA	Issued for Approval
IFB	Issued for Bid
IFC	Issued for Construction
IGF	Induced Gas Flotation
IPCIT	Internal Pipeline Construction Inspection Tool
kA	Kilo-amps
kPa	Kilopascal
kVA	Kilo Volt-amps
kV	Kilo-volts
LBV	Line Block Valve
m ³ /day	Cubic meters per day
MAWP	Maximum Allowable Working Pressure
MCC	Motor Control Center
mm	Millimeter
MPa	Megapascal

J:\SECRETARIAL\2003 FILES\33500\DBM\DBM REV 3\DBM DOCUMENT REV 3A.DOC

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum

Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 6 of 70

m/s	Meters/Second
MSAR	Multiphase Superfine Atomized Residue
MVA	Mega Volt-amps
NACE	National Association of Corrosion Engineers
NGR	Neutral Ground Resistor
PFD	Process Flow Diagram
ph	Phase
PLC	Programmable Logic Controller
psig	Pounds per square inch gauge pressure
Q.C.	Quality Control
RPO	Request for Purchase Order
RSView	Rockwell Software HMI Station
RTU	Remote Transmission Unit
SAGD	Steam Assisted Gravity Drainage
SCADA	Supervisory Control and Data Acquisition system
SCO	Synthetic Crude Oil
SLC	Allen Bradley PLC model
SSNRV	Soft Start Non-Reversing
SSPC	The Society for Protective Coatings
ТОС	Total Organic Carbon
UPS	Un-interruptable Power Supply
Vac	Voltage – Alternating Current
Vdc	Voltage – Direct Current
VFD	Variable Frequency (speed) Drive

1.1.2 Where applicable, CSA standard abbreviations will be used for all instrumentation.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 7 of 70

1.2 Project Description

Deer Creek Energy Limited (Deer Creek) intends to develop their Joslyn oil sands property as a commercial venture. The design and operation of the facility will be based on a steam assisted gravity drainage (SAGD) reservoir stimulation.

This portion of the project description covers the surface facilities, well pad connections, and surface pipelines for well effluent and steam supply.

The facility will be located adjacent to the reservoir approximately 70 km north of Fort McMurray, Alberta, at LSD: 14-28-95-12 W4M.

The project will be designed to produce 1908 m^3 /day of bitumen and recycle 95% of the produced water for steam re-injection. Deer Creek is designing to a 2.5:1 steam to oil ratio. The total dry steam production design is 4770 m^3 /day (CWE).

The main battery will consist of the oil treating train, water de-oiling process, water purification (evaporation) process, and main steam generation boilers.

Steam will be distributed to the well pads via a surface pipeline network. The same right-of-ways will be used for the well production fluid, fuel gas lines, and power distribution.

Well pads will consist of three (3) to five (5) new well pairs and the tie in of the well pair completed for Phase 1. Distribution headers for steam and manifolds, production and casing gas will be run to the wellheads. Measurement equipment for well testing will be provided at the well pads.

Provision will be made at the main facility and at the well pads to expand the production, gathering, and steam distribution system. The pipe racks will be designed to allow room for additional lines in the right-of-way spacing. Phase 1 equipment will be also utilized where possible and cost effective.

1.3 Project Objectives

To provide a well designed SAGD facility:

- to enable Deer Creek to recover and ship the bitumen from the Joslyn field;
- to ensure the water recovery process is efficient and durable;
- to meet or exceed all environmental objectives during construction and operation;
- to meet the schedule for Deer Creek;
- to meet or improve on the capital and operating cost objectives for Deer Creek.

1.4 Operations Criteria

The plant will operate on a continuous basis. Provision will be made for duplicate equipment on critical processes, or spare parts will be stocked for quick turnaround.

DEER CREEK ENERGY LIMITED Joslyn Phase 2, SAGD Facility

AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3 BDR Project: 33500

Date: March 18, 2005

Page 8 of 70

Oil production storage will be provided by two (2) 1590 m^3 (10,000 bbl) oil storage tanks and one (1) 1590 m^3 off-specification oil tank. All tanks will be manifolded to permit use of alternate tanks. The plant SCO (synthetic crude oil) storage will be in a single 1590 m^3 tank. Tanks will provide approximately 3000 m^3 of net storage capacity.

Evaporative water treating will use two (2) 60% trains. This will allow for clean-up of process internals while allowing the plant to operate at reduced capacity.

Produced water will be stored in several tanks in the facility. A 1590 m³ (10,000 bbl) surge tank will store water level controlled from the process, backwash water from the de-oiling train, and water collected from gas scrubbers in the facility.

A second 1272 m³ (8,000 bbl) skim tank will run at a fixed level to provide residence time to remove oil via gravity separation.

Water from the de-oiled water will be stored in a second 10,000 bbl tank, and boiler feed water will be stored in a third 10,000 bbl tank.

The steam system will have twin water tube boilers each sized at 50% capacity based on $4770 \text{ m}^3/\text{day}$ (CWE) total dry steam.

The produced fluids will be pipelined to site in an above-ground insulated gathering system. SCO injection at roughly 25% of bitumen production (80:20 bitumen:SCO ratio) will occur at the plant gate downstream of the group separator, and an additional 30% downstream of the free water knockout (65:35 bitumen:SCO). SCO will combine with the production flow through static mixers located upstream of the vessels.

Sales oil may initially be trucked; however, a pipeline is projected to be in place within one (1) year of start-up. The capability will be in place for the sales oil to be blended with SCO to meet the pipeline density and viscosity specifications. This will be done on site, downstream of the LACT feed pumps.

1.5 Oil Process

As noted above, all wellhead fluids will be pipelined to the main facility in an above-grade insulated gathering system. In addition, gas pressure build-up in the well annulus will be gathered at each well pad. The gas/oil ratio (G.O.R.) of the production is low; hence, annulus gas will be gathered and compressed. The gas will be metered at the pads and recombined with the group emulsion to the main facility.

Emulsion from each production well can be directed to a test header which flows to a two (2) phase test separator located in the well pad facility. The test separators enable gas and liquid production metering of individual wells.

DEER CREEK ENERGY LIMITED Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum

Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 9 of 70

The field emulsion will flow through an inlet group separator. The group separator reduces surging from the field production and removes the bulk of the produced gas. Downstream of the group separator, SCO diluent will be mixed with the group emulsion. The blend will flow to a pair of inlet free water knockouts (FWKOs). SCO will be added to improve the specific gravity of the oil to aid in separation from the water.

Bitumen and water will be separated in the free water knockout vessels. Emulsion will be level controlled to the treater and water will be cooled in heat exchangers and level controlled to the deoiling system.

Gas from the FWKO will be gathered and cooled for use in the plant fuel supply. Any condensed oily water and condensate from the gas will be dumped to the water surge tank.

Emulsion from the FWKO vessel consisting of oil, some gas, and water will flow to the horizontal treater. Here additional SCO will be injected and mixed into the emulsion stream to cool the stream and improve the specific gravity ratio of the dil-bit and water. Vessel internals and residence time will remove the remaining water and impurities. Clean oil will be cooled in a heat exchanger and flow to the production tank and overflow to the sales tank.

If the oil is off specification, some or all of the main production can be diverted to the flash treater for final clean-up.

SCO purchased by Deer Creek will be blended with the sales oil to meet the pipeline specifications for density and viscosity. Sales oil will then be pumped via a LACT feed unit to an existing pipeline terminal. Note that the LACT unit is not included in this scope, but the feed pumps to the pipeline inlet will be provided with the main facility.

Gas overheads from the treater will be cooled, separated, and pressure controlled into the fuel system. A second pressure regulator will pressure control the treater gas to the flare header to prevent overpressuring the treater. All condensed liquids will be sent into the produced water system.

Off-specification or recycle treater oil can be diverted to a third storage tank. This oil will be transferred back through the treater train using recycle pumps. All tanks will be equipped with a bottom recycle system to constantly remove a small amount of fluid from each tank on a daily basis. This will prevent a buildup of BS&W in the bottom of the sales tanks. This high BS&W fluid will be processed in the recycle treating train.

Tank blanket gas will be provided from the fuel gas system. Excess tank vapours from the production will be boosted into the fuel gas header via a VRU compressor.

Slop oil from the production system will be recycled through a separate (recycle) treating train. This will be sized to handle the transfer rate from a dedicated transfer pump, allowing difficult emulsions to be processed without upsetting the main treating train.

1.6 Water De-oiling

Condensed steam from the reservoir will be separated out in the oil treating train as produced water.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3 BDR Project: 33500

Date: March 18, 2005

Page 10 of 70

The water will then be level controlled, after cooling, to a surge tank for de-oiling. Oil content in the water is anticipated to be below 2000 PPM from the oil process.

Process water will flow through a series of heat exchangers to be cooled to 85°C for the de-oiling process. The cooled water will flow to a 1590 m^3 (10,000 bbl) surge tank.

Residence time and internals in the surge tank will allow some of the oil to rise to the surface. A skim system in the tank will allow the recovered oil to be transferred to the slop tank for processing in the secondary (recycle) treating train.

From the surge tank, water will be pumped to a dedicated skim tank. Capacity of the tank will be $1272 \text{ m}^3 (8000 \text{ bbl})$. The tank will be designed as a vortex tank, ensuring a five hour residence time in the tank to separate the bulk of the remaining oil from the water.

Tank static head pressure will be used to transfer the water through an induced gas flotation cell (IGF). The IGF will use a dissolved air flotation (DAF) pump to introduce a concentrated stream of gas bubbles into a column where the gas will help coalesce the emulsified oil to the surface.

Oil from the IGF will be skimmed from the vessel and pumped to the slop tank.

Water leaving the IGF will contain less than 20 ppm oil in water.

Final clean-up of the water to less than 5 ppm oil in water will be completed using dual walnut shell filters. Water will be pumped from the IGF through the filters. Dual filters will be used to provide 100% spare capacity, allowing one unit to be operational while the other is being backwashed or on stand-by.

De-oiled water from the walnut shell filters, ready for the purification train, will be held in a 1590 m^3 (10,000 bbl) storage tank to provide surge capacity in the system.

1.7 Water Treatment

The water treatment train will remove hardness, silica, insoluble oil and grease, total organic carbon, and dissolved solids from the water. The system to be used by Deer Creek is a vapor compression evaporator. De-oiled wastewater will enter a feed tank where the pH is adjusted. The wastewater will be pumped through a heat exchanger to raise its temperature to the boiling point. It then will flow to a deaerator, which removes non-condensable gases such as carbon dioxide and oxygen. The hot deaerated feed then enters the evaporator sump, where it combines with a recirculating brine slurry. The slurry is pumped to the top of a bundle of two-inch heat transfer tubes, where it flows through liquid distributors to ensure a smooth, even flow of brine down each tube. As the brine flows down the tubes, a small portion evaporates and the rest falls into the sump to be recirculated.

The vapor travels down the tubes with the brine and is drawn up through mist eliminators on its way to the vapor compressor. Compressed vapor flows to the outside of the heat transfer tubes, where its latent heat is given up to the cooler brine slurry falling inside. As the vapor gives up heat, it condenses as distilled water. The distillate is pumped back through the heat exchanger, where it gives up sensible heat to the incoming wastewater. A small amount of the brine slurry is continuously released from the evaporator to control density.

J:\SECRETARIAL\2003 FILES\33500\DBM\DBM REV 3\DBM DOCUMENT REV 3A.DOC

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 11 of 70

Typically, 95 - 98% of the wastewater feed is converted to distillate (<10 ppm total non-volatile dissolved solids) for reuse in the SAGD process.

Distillate is stored in the 1590 m³ boiler feedwater tank.

1.8 Steam Generation

Clean boiler feed water will be boosted to an intermediate pressure and flow through an exchanger to recover process heat from the produced water prior to entering the steam boilers. After heat recovery, the BFW is pumped up to steam generation pressure. Pressure to the boilers will be provided by booster pumps feeding main boiler feedwater pumps. The boilers will then heat the water to the saturation temperature and finally boiled to steam. The design quality is 99% saturated steam.

The plant will use water tube boilers to generate the process steam. The boilers will produce steam at 4826 kPa (700 psig) for distribution to the well pads.

A small blowdown volume from the boilers will be returned to the de-oiled water tank. The liquid will be pressure regulated to a flash vessel. Steam vapour will be utilized in the plant utility steam system. The remaining liquid is level controlled through a heat exchanger to the de-oiled water tank and recycled. The condensate from the utility steam system is also returned to the de-oiled water tank.

The boiler feedwater system will consist of charge pumps and main boiler feed pumps. The charge pumps will transfer water from the storage tanks through the produced water heat exchangers. The pumps will provide sufficient pressure to maintain net positive suction to the main pumps at the elevated temperature.

The main pumps will supply water to the boilers at 5500 kPag (800 psig). Flow to the boilers is regulated by a control value at the boiler. Excess volumes from the pumps will be recycled back to the boiler feedwater tank. To avoid temperature buildup in the feedwater tank, heat exchange will be necessary on the return flow.

The boilers will be twin 50% capacity units designed to produce 100,000 kg/hr of saturated steam each.

Boilers will have fuel systems designed to run on gas or liquid fuels. Metallurgy, fin spacing, and provision for soot handling will be incorporated into the boilers to enable the use of a liquid fuel system at a later date.

Boiler turndown capacity is roughly ten to one (10:1). With twin boilers, this provides a twenty to one (20:1) facility turndown, which provides plant capacity from a single well operation on up to full flow design.

DEER CREEK ENERGY LIMITED Joslyn Phase 2, SAGD Facility

AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 12 of 70

1.9 Water Disposal

The concentrated waste blowdown from the evaporators is collected in an agitated crystallizer feed tank and is transferred to the crystallizer recirculation line by the crystallizer feed pump. The concentrated brine feed is mixed with the recirculating brine slurry and is pumped through the shell and tube heater. The brine is heated a few degrees (sensible heating) as it passes through the heat exchanger and when it re-enters the vapor body, it flashes – effectively converting the sensible heat to latent heat in the form of vapor.

The vapors produced are collected in the sump of the main tower, pass through an entrainment separator, and enter the suction side of the vapor compressors. The vapor is pressurized and heated by the compressors and transferred to the shell side of the shell and tube heater where the vapor condenses, providing the thermal driving force for evaporation. The condensate is collected in the condensate tank and is returned to the de-oiled water tank.

In the crystallizer system, crystals are continuously formed within the brine slurry held up in the bottom of the main tower prior to entering the recirculation pump. Following the heating and flashing of the brine, water is removed. It becomes supersaturated and the salts precipitate from solution. These crystals are continuously removed by a centrifuge and the mother liquor is returned to the crystallizer recirculation pump suction. The solids are discharged from the system as a salt cake; these must be hauled away to a certified landfill location.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3 DEER CREEK

BDR Project: 33500 Date: March 18, 2005

Page 13 of 70

2.0 DESIGN BASIS

2.1 Site Conditions

LSD	14-28-95-12 W4M
Max. Ambient Temp.	32°C
Min. Ambient Temp.	-40°C
Altitude	338 m.a.s.l.
Rainfall	1125 mm per year
Max. Wind Velocity	90 km/hr

2.2 Fluid Parameters

Inlet Bitumen $1908 \text{ m}^3/\text{day}$ $4531 \text{ m}^3/\text{day}$ Inlet Water $5 \text{ m}^3/\text{m}^3 \text{ oil}$ Gas Oil Ratio Inlet Oil API 8.3 Inlet Water S.G. 1.00 Inlet Gas S.G. 1.00 H₂S in Gas 3% Inlet Sand 0.3% vol. oil 950 kPag (at main plant) **Design Operating Inlet Pressure** Design Operating Inlet Temperature 165°C $1028 \text{ m}^3/\text{day}$ SCO Usage (Treating) Source Water Usage $457 \text{ m}^3/\text{day}$ Sales Oil Quality <0.5% BS&W Treater/FWKO Water Quality <2000 ppm oil in water Steam Oil Ratio 2.5 Steam Generator Discharge Quality 99% **Inject Steam Quality** >95% Steam Generator Inlet Hardness <0.2 ppm Steam Generator Inlet TDS <3.0 ppm Steam Generator Inlet PH 8.5 to 9.5 Steam Generator Inlet Silica <0.3 ppm Steam Generator Non-Volatile TOC <0.6 ppm Steam Separator Operating Pressure 4826 kPag Steam Injection Pressure at Wellhead 1379 kPag to 1900 kPag Sour Fuel Gas Pressure 310 kPag Sour Fuel Gas Temperature 60°C Sweet Fuel Gas Pressure to Plant 9600 kPag Sweet Fuel Gas Pressure to Boiler 340 kPag Sweet Fuel Gas Temperature to Boiler 50°C

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 14 of 70

2.3 Mechanical

2.3.1 Pipeline

	Pipeline Emulsion	Steam
MAWP	4378 kPa	7549 kPa
Design Temperature	204°C	316°C
Design Velocity	1 to 3 m/s minimum, 15 m/s	maximum
Material	A106B	A106B
Yield Strength	35,000 psi	35,000 psi
Coating	None	None
Insulation	TBA	TBA
Outer Coating	TBA	TBA
Wall Thickness	See Appendix IX	See Appendix IX
Stress Levels	See Appendix IX	See Appendix IX

2.3.2 Main Facility

	Bitumen	Water	Produced	Steam	Glycol
			Gas		Utility
Design Pressure (kPa)	1379	1379	1379	7549	1379
Design Temperature	204	204	204	316	204
(°C)					
Material Pipe	A106B	A106B	A106B	A106B	A106B
Material Flanges	SA105	SA105	SA105	SA105	SA105
Material Fittings	A234	A234	A234	A234	A234
	Gr. WPB				
Studs & Nuts	B7M	B7M	B7M	B7M	B7M
	2HM	2HM	2HM	2HM	2HM
Gaskets	Graphoil	Graphoil	Graphoil	Graphoil	Graphoil
	API 601				

2.3.3 Wellsite Facilities

Wellhead Shut Off Valve	-	API Class 3,000
Fluid Meters	-	Differential Pressure, Vortex, & Coriolis
Steam & Gas Meters	-	Differential Pressure & Vortex
Chemical Pumps	-	Williams/Union/Milton Roy
Fluid Circulating Pump	-	TBA 300 ANSI

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 15 of 70

- 2.3.4 Valves and Piping (Facilities)
 - 2.3.4.1 The types of valves to be used will be ball, check, globe, plug, butterfly, and gate valves. The valves will be suitable for Nace MR0175 sour service.
 - 2.3.4.2 Piping will be designed to the maximum flange rating pressure at the specified temperature.
 - 2.3.4.3 All stud bolts and nuts will be B7M and 2HM.
 - 2.3.4.4 Refer to the Appendix for the piping and valve specifications.
- 2.3.5 Valves and Piping (Wellheads)
 - 2.3.5.1 Types of valves will be ball, check, globe, and gate valves. Valves will be suitable for Nace MR0175 service.
 - 2.3.5.2 Piping will be designed to CSA Z662 low temperature sour specifications. Wellhead facilities for produced emulsion and casing gas will be built to 300 ANSI class pressure design to achieve 4378 kPa working pressure at 204°C. The steam pipelines will be built to 600 ANSI class pressure design to achieve 7550 kPa working pressure at 316°C.
- 2.3.6 Painting and Internal Coating System
 - 2.3.6.1 Internal coating is to be used in water service in storage tanks and downstream of storage tanks.
 - 2.3.6.2 Internal coating to be Devoe, Enviroline, or equal. Coating will be completed to Deer Creek coating specifications.
 - 2.3.6.3 External painting will be as per Deer Creek specifications.
- 2.3.7 Skid Design
 - 2.3.7.1 All equipment, where possible, will be mounted on structural skids suitable for transport to site. Skids will be pre-wired where possible. Skid edge connections will be laid out to facilitate tie-ins to the area piping and electrical.
 - 2.3.7.2 Larger equipment may require assembly at site, but will be pre-built to the extent allowed by trucking and weight limitations.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 16 of 70

2.3.8 Rack Design

- 2.3.8.1 The interconnecting pipe rack will be built in modular sections mounted on a structural frame. Piping will be mounted at roughly three (3) meters above grade, with inter-connecting spools to the skids dropping down from the rack as required.
- 2.3.8.2 The rack will have a combination of insulated and utilidor enclosed piping. Critical lines will be heat traced to prevent freezing in cold weather.
- 2.3.8.3 Electrical cables will be supported on cable trays mounted with the rack piping.

2.4 Electrical

- 2.4.1 Voltages
 - 2.4.1.1 All facilities will be designed utilizing equipment at the following voltage levels:
 - a) 4160V, 3 phase, 60 Hz for on-site distribution from main switchgear (SWGR-100) to utilization MCCs in the main facility.
 - b) 4160V, 3 phase, 60 Hz for off-site distribution to well pads within a specified distance of the main facility.
 - c) 4160V, 3 phase, 60 Hz for motors sized 300 6000 hp.
 - d) 480V, 3 phase, 60 Hz for motors sized up to 300 hp.
 - e) 120/208V, 3 phase, 60 Hz for lighting and utilities
 - f) 120V, 1 phase, 60 Hz for motor control.
 - g) 125Vdc for 4160V switchgear control.
 - h) 24Vdc for process control and shutdown instrumentation.
 - i) 24/12Vdc for communications including uplinks and radio/Scada equipment.
- 2.4.2 Project Load
 - 2.4.2.1 A detailed load list and load summary for the project is included as an appendix to this DBM. The estimated maximum operating load including well pads is 7,700 kW, not including load growth during detailed design. Assuming a load growth factor (LGF) of 1.10 1.25, the design operating load for the project is 8,700 kW.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 17 of 70

2.4.3 Power Supply

- 2.4.3.1 The overall single line diagram for the project, drawing D-33500-E-04-301 Rev.2, is attached as an appendix to this DBM.
- 2.4.3.2 ATCO Utilities will supply power to the main facility from a 25kV distribution system, to be fed from a new substation presently under construction. ATCO will supply a metering tank at the lease edge and an underground 25 kV feeder to ATCO owned main transformers T-100 and T-001. These transformers, rated 7.5/10 MVA ONAN/ONAF and 1500 kVA respectively, will step down the 25kV utility voltage for utilization by the project. All ATCO facilities and equipment will be owned, operated, and maintained by ATCO.
- 2.4.3.3 Power supply to well pads will be via ATCO supplied and installed overhead 25 kV, 3ph, power lines. Power lines will terminate at each site to a 750 or 1000 (as required by pad loading) kVA 25kV/480V step down transformer c/w metering supplied and installed by ATCO.
- 2.4.4 Emergency Generation
 - 2.4.4.1 Standby diesel power generation will be installed at the main facility complete with auto start capability to allow for emergency operation during utility outages.
 - 2.4.4.2 The emergency generation will be sized per minimum safe requirements to prevent equipment damage during an extended power outage. Emergency power will supply all critical and emergency loads including the plant control system, emergency lighting, instrument air systems, safety showers (including required pumps), freeze protection, and glycol heating circulation pumps.
 - 2.4.4.3 The emergency generator(s) will not run synchronized with the utility. An auto transfer switch will be provided however, to allow a make before break transition back to utility power. When transferring back to utility power, the transfer switch will ensure the generators are paralleled with the utility for no more than 1 second.
- 2.4.5 Main Facility Distribution
 - 2.4.5.1 Main transformer T-001 will feed 480Vac, facility MCC-1 which in turn will feed area 480Vac loads and both emergency MCC (E1, E2) lineups via an auto transfer switch.
 - 2.4.5.2 Main transformer T-100 will feed a line up of 4160V switchgear (SWGR-100), which in turn will supply medium voltage boiler feedwater pump motors, evaporator recirc pumps, evaporator compressors, and 4160/480V utilization transformers for MCC-2 480V loads at the facility.
 - 2.4.5.3 The 4160V power system will be high resistance grounded.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 18 of 70

2.4.5.4 4160V main breaker CB-101 will contain an electronic feeder protection relay for metering of incoming power usage. Available information from the relay will be instantaneous and summarized values for:

- a) Line amps (per phase)
- b) Line volts (individual line-line combinations)
- c) Frequency (Hz)
- d) kW
- e) kVA
- f) kVARs
- g) Power factor
- 2.4.5.5 The feeder protection relay will also provide overcurrent, over/undervoltage, underfrequency, ground fault and other protection determined during the detailed design phase of the project. The 4160V main breaker will feed a common distribution bus, all housed in a line up of metal clad switchgear. This bus will supply 4160V boiler feed pump and evaporator compressor motor starters and individual feeder breakers for the following:
 - a) 4160V/480V main facility utilization transformers
- 2.4.5.6 A summary of 4160V/480V utilization transformers for the project is shown below:

Tag	Description	Rating
T-002	MCC-2 Transformer	1500 kVA

- 2.4.5.7 The feeder breakers for the MCC-2 utilization transformer will be complete with electronic protection relay, metering, and all instrumentation required to protect the feeders and transformer. The transformer will be rated 4160V-480V, 3 ph, 60 Hz, and will feed a specific 480V motor control center (MCC-2) for its area. Transformers, switchgear, and MCCs will be sized to allow for a minimum of 25% expansion of the connected load.
- 2.4.6 480V Motor Control Centers (MCCs)

2.4.6.1 For the project the following MCC lineups will be provided:

Tag	Voltage	Location	Description
MCC-1	480V	MCC-1 Bldg	Main Facility – Water/Utilities Area
MCC-1E	480V	MCC-1 Bldg	Main Facility – Emergency Bus
MCC-2	480V	MCC-2 Bldg	Main Facility – Oil/Steam Area
MCC-2E	480V	MCC-2 Bldg	Main Facility – MCC-2 Emergency Bus
MCC-WP1	480V	Well Pad 1 MCC Bldg	Well Pad 1 – All Loads
MCC-WP2	480V	Well Pad 2 MCC Bldg	Well Pad 2 – All Loads
MCC-WP3	480V	Well Pad 3 MCC Bldg	Well Pad 3 – All Loads
MCC-WP4	480V	Well Pad 4 MCC Bldg	Well Pad 4 – All Loads

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3 BDR Project: 33500

Date: March 18, 2005

Page 19 of 70

- 2.4.6.2 All MCCs will be housed in environmentally controlled buildings located strategically to optimize cost savings on both cable and tray. Locations will be selected to allow good access by operations personnel while addressing area classification, safety and maintenance concerns.
- 2.4.6.3 Main facility auxiliary MCCs will be fed from a 4160-480V, 3ph, 60 Hz stepdown transformer mounted on the same skid as the MCC building. The neutral of the 480V transformer winding will be high resistance grounded through a 2A neutral grounding resistor.
- 2.4.6.4 Skid packages and buildings for the MCCs will be pre-fabricated, wired, and shipped to the field as a complete unit set up for field termination of the following:
 - a) All load cabling.
 - b) All area control and communication cabling.
 - c) Emergency bus feeders (for main facility MCC buildings only).
- 2.4.6.5 Each 480V MCC will be complete with a fixed main breaker sized to protect the bus and supply feeder.
- 2.4.6.6 The main breaker or metering compartment of each 480V MCC will contain a digital meter to monitor volts, amps, watts, vars, power factor and total harmonic distortion.
- 2.4.6.7 MCC main breaker sections will include indication and alarm contacts for over/under voltage, ground fault and underfrequency, if required. Alarm contacts will be wired back to the main facility control system where logic will control any load shedding that may be required. Load shedding requirements, if any, will be determined during detailed design.
- 2.4.6.8 Ground fault indication will be provided for each 480V MCC. The ground fault relay will provide form C contacts for indication/alarm. Ground faults will alarm only and not trip.
- 2.4.6.9 Each MCC lineup will contain the following equipment:
 - a) All required starters/VFDs for the areas motor loads.
 - b) Lighting panel(s) fed from a 480-120/208V 3ph 60 Hz transformer integral to the MCC lineup for sizes up to 45 kVA and remote to the lineup for greater than 45 kVA.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

- c) A contactor panel for all outside/area lighting controlled by photocell. Photocell control for the facility will be via a single cell located at the main control room with contacts wired to the control system for control of individual area panels. Contactors for any utility loads (chemical pumps, etc.) will also be housed in this panel/MCC section.
- d) Lighting panel(s) and controls for area heat trace, fed from a 480-120/208V 3ph 60 Hz transformer integral to the MCC lineup.
- e) A dedicated section, with suitable barriers, containing the control system I/O equipment required for the MCC lineup.
- 2.4.6.10 The packaged MCC skid/enclosure will contain a number of utility outlets and alarm indication items (beacons/horns) as determined during the project Hazop.
- 2.4.7 Un-Interruptible Power Supply (UPS) Systems
 - 2.4.7.1 A 125Vdc rectifier/charger system with dedicated batteries will be provided to supply control power to 4160V switchgear SWGR-100.
 - 2.4.7.2 Control power for the main facility will be supplied from 24Vdc rectifier/charger systems located throughout the facility. The batteries for each 24Vdc system will be sized for a minimum of 24 hours backup for essential DC loads. The rectifier/ charger systems will have 208Vac, 3 phase input obtained from the emergency bus.
 - 2.4.7.3 All 24Vdc systems will be negative grounded, i.e. non-floating.
 - 2.4.7.4 Power for the main facility's computer, radio, and communication systems will be supplied from 120Vac UPSes Each 120Vac UPS will consist of a battery charger, dedicated batteries, and an inverter. The power supply for each 120Vac UPS will be from the emergency bus. Each inverter will supply power to the load through a static transfer switch, which will provide undetected transfer to the AC line should the inverter fail. The batteries supplied with each system will be sized to maintain essential 120Vac load for a minimum of 4 hours.
 - 2.4.7.5 Backup times mentioned above are based on having the main facility's emergency generation available during utility power outages. The project Hazop will determine if different backup times are required, in which case charger and battery sizing will change.

DEER CREEK ENERGY LIMITED Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

Page 21 of 70

2.4.7.6 Following is a summary of the UPS systems that will be installed:

Location of Service	Size and Voltage	Service
MCC-1 Building	75 A, 125 Vdc	4160V SWGR-100
MCC-1 Building	200 A, 24 Vdc	Control System
MCC-1 Building	2 kVA, 120 Vac	Computer, Radio, Communications
MCC-2 Building	200 A, 24 Vdc	Control System
Office Building	5 kVA, 120 Vac	Computer, Radio, Communications
Each Well Pad	75A, 24 Vdc	Control & Communications

2.4.8 Lighting

2.4.8.1 Lighting for the facilities will be provided to allow for industry standard lighting levels around and in all work areas. The following lighting levels will be provided as a minimum:

Area	Lux	Area	Lux
Building Entrances	50	Stairs & Platforms	50
Process & Utility Working	60	Parking	20
Catwalk & General Walkways	20	General Yard	20
Truck Load/Unload	50	Warehouse/Garage	40
Office/Control Room	75		

2.4.8.2 Indoor Lighting

- a) Indoor lighting will be provided as follows:
 - i) Office/Living Quarters: Fluorescent Fixtures
 - ii) Warehouse/Garage: High Pressure Sodium with fluorescent fixtures in office/desk areas.
 - iii) MCC/Control Room/Generator areas: Fluorescent Fixtures
 - iv) Process Areas: High Pressure Sodium
 - v) Utilities Areas: High Pressure Sodium
 - vi) Battery Backed lighting will be provided at all exits for all areas.

2.4.8.3 Outdoor Lighting

a) All exit doors, platforms, walkways, and ladders will be provided with high pressure sodium lighting to a level as specified in the chart above. Yard and outside area lighting will be provided through an interconnected series of floodlight pole systems. Each pole will consist of a hinged pole, winch, fixture spreader, and 400 watt high pressure sodium fixtures.

DEER CREEK ENERGY LIMITED Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum

Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 22 of 70

b) All exterior lighting will be photocell controlled. This will consist of a master photocell wired into the facility control system. When in "Auto" mode the control system will switch exterior lighting contactors on at night and off during the day. In addition, an increased area and/or level of lighting will be provided when the lighting control is switched to "Maintenance" mode.

2.4.9 Electric Heat Tracing

- 2.4.9.1 Electric heat tracing will be installed for all piping systems, pumps, and equipment as defined on the P&IDs.
- 2.4.9.2 Self-limiting heat trace will be utilized for all systems with maximum operating or upset temperatures between 0°C and 150°C. For equipment or piping systems having an operating or upset temperature in excess of 150°C, MI (mineral insulated) heat trace will be used.
- 2.4.9.3 Power supply for the heat trace will be by area, supplied from the individual area MCC as required.
- 2.4.9.4 Controllers for the tracing will be located indoors wherever possible for areas with a high concentration of heat trace circuits.
- 2.4.9.5 Any heat trace installation that does not warrant an electronic controller will be fed from ground fault circuit interrupting breakers, with each heating cable terminating in a LED type indicating light.

2.4.10 Motors

- 2.4.10.1 Voltage and Rating:
 - a) All motors less than 1 hp will be supplied at 120Vac 1 ph, 60 Hz
 - b) All motors 1 hp to 300 hp will be supplied at 480Vac, 3 ph, 60 Hz
 - c) All motors over 300 hp to 5000 hp will be supplied at 4160Vac, 3ph, 60Hz
 - d) All motors greater than 5000 hp will be addressed on an individual basis for voltage, protection, etc.
 - e) All motors will have a minimum service factor of 1.15. Service factors shall not be used to size motors to a load.

2.4.10.2 Protection:

- a) "Klixons" shall not be supplied or required for any motors installed in this facility.
- b) All VFD driven motors 100 hp and greater will have stator RTDs as a minimum. Bearing RTDs will be installed if recommended by the motor manufacturer.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 23 of 70

- c) All 480V motors 100 hp and greater will be protected by an electronic motor protection relay.
- d) All 4160V motors will be protected by a Multilin 369 (or equal) motor protection relay.

2.4.10.3 Classification:

- a) All motors will be suitable for the area classification and use for which they are intended.
- b) All motors shall be WP rated as a minimum. TEFC motors shall be supplied in Zone 2 areas.

2.4.10.4 Control:

- a) Motor control circuits will be powered from the individual starter/VFD they control.
- b) Motor circuits will be wired with the N.O. ESD/SD contact(s) wired at the front of the control circuit in such a manner that the motor will stop upon tripping of the contact(s). Additionally, the control circuit will be deenergized if the starter/VFD main power disconnect is moved to the off position.
- c) RTDs from a motors stator and/or bearings will be wired back to an individual RTD monitor located on the motor starter/VFD cabinet, with shutdown directly into the motor control circuit. Additional contact(s) will be provided for alarm and shutdown indication to the main control system.

2.4.11 Cables

- 2.4.11.1 HL designated TECK cable will be utilized as the primary medium for electrical connection. Cables will be run through cable tray and underground trenches from feed point to end termination.
- 2.4.11.2 Cable connector types/ratings will be installed according to CEC and the construction specifications.

2.4.12 Installation

- 2.4.12.1 Area Classification
 - a) All process areas handling flammable liquids, vapors, or gas, specifically but not limited to bitumen, produced gas, produced water, diluent, and fuels, will be classified as Class 1, Zone 2, Group IIA in accordance with:
 - i) American Petroleum Institute Recommended Practice RP-505: Recommended Practice for Classification for Electrical Installations at Petroleum Facilities Classified as Class 1 Zone 0, Zone 1, and Zone 2
 - ii) Canadian Electrical Code Part 1, Nineteenth Edition, C22.102

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

- Page 24 of 70
- iii) Alberta Labour Code for Electrical Installations at Oil and Gas Facilities, Second Edition, 2002
- b) The fluids to be processed have sour (H_2S) attributes; therefore, all installations shall be done to standards required by a sour facility.
- c) Fugitive emission calculations will be done to determine the minimum ventilation requirements for all enclosed areas/packages containing hydrocarbons. The fugitive emissions study will confirm the zone classification and determine required ventilation rates. Hygiene for operating personnel will also be considered when determining ventilation rates.

2.4.12.2 Cable Tray & Conduit Systems

- a) Cable tray will be aluminum, ladder configuration, with a minimum of a D class rating for load bearing. All tray will be installed in accordance with manufacturer's specifications. Tray covers will be installed where required to avoid cable damage.
- b) Cable tray will provide the main artery for all cable routing from power and control distribution points to all end points. This will require tray to be installed from all MCC/Control buildings/packages throughout the facilities to device/equipment end points. Where required, cabling will be transitioned into conduit to reach its final termination point.
- c) All conduit systems installed will be comprised of aluminum components. Fittings, boxes, sleeves and miscellaneous components shall be installed using an approved anti-seize lubricant on all threaded surfaces.
- d) The support structure for the main cable tray runs will be from the main piperack. Additional piles and structural steel will be added as required to provide the minimum support points required for the system to channel to the required end locations.
- e) Strut/channel will be installed for support of tray and conduit components as required. All conduits will be secured to strut as per CEC and construction specifications utilizing approved straps.

2.4.12.3 Cable Installation

a) Cable trenches will be provided as required for the installation of cabling to end points/equipment located remotely from the cable tray system. Trenches will be provided on firm undisturbed soil and be dug with a smooth and level bottom. A bed of sand as per the specifications will be provided above and below the cable to allow for proper drainage and cable movement due to minor settling, contraction, and expansion.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 25 of 70

b) Cable for the facility will be installed as per CEC and construction specifications. All cable will be provided with proper support and mechanical protection.

2.4.13 Spares

2.4.13.1 For this project a 25% spare level shall be utilized for cabling. Cable runs for control and utility shall be sized to incorporate a minimum of 25% spares. This extends to termination points such as junction boxes, control panels, and terminals.

2.5 Instrumentation and Control

- 2.5.1 Instrumentation/Operational Philosophy
 - 2.5.1.1 Pressure and differential pressure instruments will be transmitters. Instruments will be connected to sensing points using 27mm threadolet connections as detailed in the piping specifications. All connections will have a three-valve manifold isolation valve to permit on-line isolation and calibration.
 - 2.5.1.2 Temperature instruments will be RTD style probes mounted in 316 class stainless steel thermowells. Critical sensing points will have local temperature displays.
 - 2.5.1.3 Level indication and control will be via transmitters. Each level transmitter will have a corresponding sight glass or sample taps. All level instruments will be mounted on bridles with 3" (89mm) block valves. The bridles will be capable of being isolated from the vessel to allow service. Instrument bridles will have low-pressure steam to them to allow backflushing to the vessel to minimize fouling. Bridles will be capable of blowing down to the slop header.
 - 2.5.1.4 Control valves will be actuated with instrument air. The control signal will be via an I/P output from the control system. The control system signal will be derived from the appropriate process transmitter.
 - 2.5.1.5 Control and ESD (emergency shutdown) valves will be equipped with position indicators. This will be relayed to the control system enabling a display of valve position. ESD type valves will show open or closed only, while flow and pressure valves will indicate a percent of travel.
 - 2.5.1.6 Critical shut off valves will be solenoid actuated. The solenoids will be powered from the UPS system. This will ensure operation in the case of a power failure. ESD valves will be set to fail closed on loss of signal. Process valves for level and flow control will also fail closed on loss of signal. Blowdown and some bypass valves will fail open to protect equipment or for safety purposes.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 26 of 70

2.5.2 Control System

- 2.5.2.1 The control system will be based on Rockwell Automation's Logix5000 platform for the main facility. The overall structure of this control system will consist of one (1) main control panel connected through a hardwired network to one (1) or more auxiliary (remote) control panels. All other local control panels supplied with specific equipment will also be connected to the network. All I/O devices will then be hardwired to these control panels.
- 2.5.2.2 In the main facility each of these remote I/O systems will be hardwired back to the main control system using suitable armored/shielded cabling. For the well pads the remote I/O will communicate back to the main control system via a SCADA system.
- 2.5.2.3 The control systems will be powered by a 24Vdc negative grounded power supply complete with battery back-up capable of supplying uninterrupted 24Vdc power to all of the control processors, control chassis, network systems, I/O modules, and end devices. This will allow for complete control system operation in the event of a utility power fail or a generated power fail.
- 2.5.2.4 For the main facility, all of the control and shutdown logic will reside in the main control logic processors located in the main control panel. This system will consist of two (2) redundant processors, each located in its own redundant controller chassis. Each of the two controller chassis containing the processors will also have redundant 24Vdc power supplies. This design will provide a control system with seamless and uninterrupted control in the unlikely event of hardware failure. Should any of this main control hardware fail, the operations personnel will be made aware of the failure through the HMI system, allowing the failed part to be replaced without any interruption in the facility control.
- 2.5.2.5 Remote control panels will contain either remote I/O chassis connected to the main control panel via the network, or remote chassis complete with a processor, also connected to the main control panel via the network. The hardware in the remote control panels will be Rockwell Automation ControlLogix.
- 2.5.2.6 The local control panels to be supplied by equipment vendors could possibly contain various types of control devices. Every effort will be made to have equipment vendors supply their control panels with Allen Bradley/Rockwell Automation control hardware. This could include ControlLogix, CompactLogix, or the SLC-500 PLC family. This will allow for seamless integration into the main control system.

DEER CREEK ENERGY LIMITED Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3 BDR Project: 33500 Date: March 18, 2005

Page 27 of 70

- 2.5.2.7 The network utilized for this control system will be ControlNet, a state-of-theart open network that will provide sufficient bandwidth for I/O, peer-to-peer messaging, and programming. ControlNet is a very efficient network in that it uses producer/consumer technology. This allows for all nodes on the network to simultaneously access the same data from a single source, thereby reducing response time. This ControlNet network will also be used for communication to HMI devices and will have redundant cables wherever possible. The local control panels supplied by equipment vendors may also be connected to the control system utilizing Rockwell Automation's DH+ network, depending on the hardware supplied.
- 2.5.2.8 The facility human machine interface (HMI) will be Rockwell Automation's RSView active display server. The hardware will consist of two (2) redundant server machines and either a tape, zip disk, or CD backup system. Both of these machines will be powered from the 120Vac un-interruptable power supply to allow the HMI system to continue to function in the event of a power failure. The server machines will be connected to the control system via the ControlNet network and will also utilize the redundant cabling.
- 2.5.2.9 Located in the main office/control room will be two (2) personal computers, each complete with two (2) 19" flat panel monitors and each connected to the 120Vac UPS system. These two machines will be networked to the RSView active display server machines using an ethernet/IP network, and will be running a Windows XP operating system and the RSView active display client software. This will provide the operations personnel with an interactive, dynamic, graphical display of the control system which will allow them to monitor and adjust specific operational parameters throughout the facility. It will also allow for data logging, trending, and report generation. In addition, PC-based HMIs could be located throughout the facility in any non-hazardous location.
- 2.5.2.10 Mounted in the front door of the main control panel, each of the auxiliary control panels, and perhaps throughout the facility, will be Rockwell Automation's Versa View panel-mounted HMI Color Touch screens. These screens may vary in size from 7" to 15", measured diagonally, depending on location, and will be powered from the 24Vdc UPS. These Versa View displays will have a Windows CE operating system and will also run the RSView active display client software. They will be connected to the RSView active display servers via a thin client Windows terminal services software. This HMI system will allow operations personnel to view the same display screens throughout the facility that they have access to in the main office/control room.
- 2.5.2.11 Utilizing the RSView active display server will allow for all HMI screen development and future modifications to be done on the server machines, and all of the clients will be updated immediately. This system will also allow for remote clients to connect to the server with either a read/write or read-only configuration, from almost anywhere in the world.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 28 of 70

2.5.3 Metering and Meter Proving

- 2.5.3.1 Wellsites
 - a) Gas, liquid, & steam meter runs will be differential pressure, vortex, or coriolis type.

2.5.3.2 Main Facility

- a) Gas meter run will be orifice plate, senior fitting type or vortex meter.
- b) Emulsion meter will be differential pressure, vortex meter, or mass meter.
- c) Bitumen meter run will be differential pressure, vortex meter, or mass meter.
- d) Steam meter will be a differential pressure or vortex meter.
- e) Boiler feed fuel gas meter will be a senior type orifice plate meter run.
- f) Water meter will be a vortex or magnetic meter.
- g) Chemical meters will be a magnetic meter or other.
- h) Flare meter will be a transit time ultrasonic meter.
- i) Prover taps will be provided on the downstream side of all liquid meters.

2.5.4 Instrument Air System

- 2.5.4.1 Wellsites
 - a) All wellsite equipment will be pneumatically controlled and operated. The system will operate at 700 to 800 kPag.
- 2.5.4.2 Main Facility
 - a) All main facility equipment will be pneumatically controlled.
 - b) Pneumatic instruments will operate using instrument air. A full back-up compressor will be provided. System will operate at 700 to 800 kPag.

2.5.5 SCADA

2.5.5.1 All wellsite control systems will be capable of data transfer to and from the main facility control system. This will be done on a high speed unlicensed radio system. The system will be readily expandable and capable of a communication rate of 1 Mb/sec.

J:\SECRETARIAL\2003 FILES\33500\DBM\DBM REV 3\DBM DOCUMENT REV 3A.DOC

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 29 of 70

2.6 Safety

- 2.6.1 Fire Suppression
 - 2.6.1.1 Portable fire extinguishers will be installed on all sites.
 - 2.6.1.2 Wellsites
 - a) As a minimum it is proposed to install one (1) 150# wheeled Purple K fire extinguisher for each wellsite, one (1) 30# handheld fire extinguisher for each skid, and one (1) 20# handheld CO_2 fire extinguisher for the MCC building. Final decision on type and quantity of extinguishers will be provided by Deer Creek safety personnel.
 - 2.6.1.3 Main Facility
 - a) As a minimum it is proposed to install four (4) 150# wheeled Purple K fire extinguishers for the facility, one (1) 30# handheld fire extinguisher for each skid, and one (1) 50# wheeled CO_2 fire extinguisher for the MCC building. Final decision on type and quantity of extinguishers will be provided Deer Creek safety personnel.
- 2.6.2 Miscellaneous Safety Equipment
 - 2.6.2.1 Deer Creek safety personnel will be responsible for specifying and purchasing all miscellaneous safety equipment that will be required on site. This includes but is not limited to eyewash stations, chemical and fire burn kits, safety kits, SCBA apparatus, etc. Safety shower will be provided along with required safety equipment for hazardous chemicals.

2.7 Civil

- 2.7.1 Equipment Foundations
 - 2.7.1.1 Most equipment will be mounted on structural steel skids provided by the equipment manufacturer. These skids will be placed on piled and grade beam foundations. The skids will be welded to the grade beams once they are positioned. Rotating equipment of significant size will have concrete in the equipment skid to add inertial mass. These skids will require shimming to the structural foundation prior to welding in place. Large equipment and tanks may be set on poured concrete foundations. The main steam generators and the evaporator towers will require poured concrete foundations.

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 43 of 70

5.0 TECHNICAL GUIDELINES

5.1 Codes and Standards

This project will be built to codes and standards as an Alberta, Canada, project. Codes and standards listed are to be enforced as they apply to all equipment and installations for this project. Should local standards or regulations exceed or cause conflict, the issue shall be referred to the engineering company for clarification.

5.1.1 General

- 5.1.1.1 Occupational Health and Safety Association Regulations.
- 5.1.1.2 Worker's Compensation Regulations.
- 5.1.2 Mechanical
 - 5.1.2.1 American National Standards Institute (ANSI) B31.3
 - 5.1.2.2 American Society of Mechanical Engineers (ASME) Sect. VIII
 - 5.1.2.3 American Society of Mechanical Engineers (ASME) B16.5
 - 5.1.2.4 Canadian Standards Association (CSA) B51 Boiler, Pressure Vessel and Pressure Piping Code.
 - 5.1.2.5 Safety Codes Act, Boilers and Pressure Vessels Registration, Alberta, Canada
 - 5.1.2.6 NACE MR 0175 sour service requirements.
 - 5.1.2.7 Steel Structures Painting Council (SSPC) Specifications.
 - 5.1.2.8 CSA Z662 Oil & Gas Pipeline Systems.
 - 5.1.2.9 AEUB Guides 56 & 55.
 - 5.1.2.10 API 650 for storage tanks.
 - 5.1.2.11 API 610 for hydrocarbon pumps.
 - 5.1.2.12 Deer Creek Energy Limited General Specifications.
- 5.1.3 Electrical
 - 5.1.3.1 Canadian Electrical Code Part I, Eighteenth Edition C22.1-98 c/w all subsequent issued bulletins and amendments from the Alberta Safety Codes Council (STANDATA Electrical) April 1999 First Edition.

b dr Bower Damberger Rolseth	DEER CREEK ENERGY LIMITED Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3	DEER CREEK Energy Limited	
Engineering Ltd.	BDR Project: 33500 Date: March 18, 2005		
5.1.3.2	Equipment will bear approval/certification of at certification organizations listed in STANDATA I	e least one of the accepted Pub# LEG-ECR-2 (Rev 2).	
5.1.3.3	Most recent Canadian Standards Association (CSA) codes and standards for electrical equipment, specifically pertaining to the Oil & Gas Industry.		
5.1.3.4	Most recent Electrical Equipment Manufacturers A and standards for electrical equipment, specifically Industry.	Association (EEMAC) codes y pertaining to the Oil & Gas	
5.1.4 Civil			
5.1.4.1	National Building Code		
5.1.4.2	All equipment will be built to Alberta Standards for	or Earthquake Zone Zero.	
5.1.5 Environme	ntal		
5.1.5.1	Environmental Protection and Enhancement Act (EPEA).		

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

BDR Project: 33500 Date: March 18, 2005

Page 45 of 70

Deer Creek Energy Limited

Joslyn Phase 2 SAGD Facility

Appendices

- I Process Flowsheet (Well Pad)
- II Process Flowsheet (Oil Treating)
- III Process Flowsheet (Water and Steam)
- IV Process Flowsheet (Glycol)
- V Well Pad Conceptual Plot Plan
- VI Site Plot Plan
- VII Bitumen, Produced Water, Gas, SCO, and Source Water Analyses
- VIII Area Development Plan
- IX Piping Materials and Valve Specifications
- X AFE Summary and Cost Estimate Notes
- XI Pipeline Cost Estimate
- XII Well Pads Cost Estimates
- XIII Main Facility Cost Estimate
- XIV Bitumen/Water Emulsion Viscosity Curves and Bitumen/SCO Blends
- XV Area Classification Plan
- XVI Overall Single Line Diagram
- XVII Project Load Summary
- XVIII Control Architecture
- XIX Project Schedule
- XX Material Balance (Oil Process)
- XXI Material Balance (Water)
- XXII Project Execution Plan

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 46 of 70

APPENDIX I

PROCESS FLOWSHEET (WELL PAD)

LEGEND

LSD

\bowtie	GATE VALVE (GA)	-	INSULATION (H-HOT, C-COLD)	\bigcirc	LOCALLY MOUNTED INSTRUMENT
2021	BALL VALVE (BA)		INSULATION & HEAT TRACE	$\overset{\smile}{\ominus}$	MOUNTED ON MAIN CONTROL ROOM PANEL
K¥	PLUG VALVE (PL)		PROCESS PIPING	$\tilde{\ominus}$	LOCAL PANEL MOUNTED INSTRUMENT
NM				\bigcirc	PROGRAMMABLE LOGIC CONTROL SYSTEM
				\bigcirc	PROGRAMMABLE LOGIC CONTROL SYSTEMS ACCESSIBLE TO OPERATOR
	GLOBE VALVE (GL)	× × ×	CAPILLARY TUBING	\bigcirc	AUX. PROGRAMMABLE LOGIC CONTROL SYSTEMS ACCESSIBLE TO OPERATOR
	CHECK VALVE (CH)		ELECTRICAL SIGNAL	ACV	ANALYTIC CONTROL VALVE
\% _	BUTTERFLY VALVE (BU)	t t t	HYDRAULIC SIGNAL	AE AIC	ANALYTIC ELEMENT ANALYTIC INDICATING CONTROLLER
	SOCKET WELD VALVE	-~-~-	ELECTROMAGNETIC/SONIC SIGNAL	AT AIT	ANALYTIC TRANSMITTER ANALYTIC INDICATING TRANSMITTER
	SCREWED VALVE	ooo	SOFTWARE OR DATA LINK	BDV BCS	BLOWDOWN VALVE BURNER CONTROL STATUS
	FLANGED VALVE	A.O.	AIR TO OPEN (FAIL CLOSED)	BE BZ	BURNER ELEMENT BURNER IGNITOR CONTROL VALVE
L L	CONTROL VALVE WITH	A.C.	AIR TO CLOSE (FAIL TO OPEN)	dPI dPS	DIFFERENTIAL PRESSURE INDICATOR
R	CONTROL VALVE WITH	C.S.O.(C)	CAR SEAL OPEN (CLOSED)	dPT ESDV	DIFFERENTIAL PRESSURE TRANSMITTER EMERGENCY SHUTDOWN VALVE
Ţ		FSD		<u>FA</u> FC	FLOW ALARM (H—HIGH, L—LOW) FLOW CONTROLLER
	TRESSURE REGULATOR	L.3.D.		FCV FDSD	FLOW CONTROL VALVE FIRE DETECTION SHUTDOWN
\mathbf{A}	SOLENOID VALVE	F.P.	FULL PORT	<u>FSD</u> FE	FLOW SHUTDOWN (H—HIGH, L—LOW) FLOW ELEMENT
Ø	ANGLE CHOKE	R.P.	REGULAR PORT	FFSD FI	FLAME FAILURE SHUTDOWN
	INLINE CHOKE	N.C.	NORMALLY CLOSED	FIC FIR	FLOW INDICATOR CONTROL FLOW INDICATOR RECORDER
	DIAPHRAGM	N.O.	NORMALLY OPEN	FR <u>FS</u>	FLOW RECORDER FLOW SWITCH (H—HIGH, L—LOW)
I ∖_ I	Y–STRAINER	S.R.	SPRING RETURN	FQI FT	FLOW QUANTITY INDICATOR FLOW TRANSMITTER
× X	PRESSURE SAFETY VALVE	- - -	SPEC BREAK	FIT FY	FLOW INDICATOR TRANSMITTER FLOW TRANSDUCER
			SUPPLIED BY OTHERS	HIC HR	HAND INDICATING CONTROLLER HAND RECORDER
	TURRINE METER OR	\bigcirc	TIE IN NUMBER	HS HY	HAND SWITCH HAND TRANSDUCER
	POSITIVE DISPLACEMENT METER			H2S H2ST	H2S GAS DETECTION H2S GAS DETECTION TRANSMITTER
		~	TIE IN LUCATIONS	LA LC	LEVEL ALARM (H-HIGH, L-LOW) LEVEL CONTROLLER
	SPECTACLE BLIND, OPEN (CLOSED)	PI	PNEUMATIC TO CURRENT	LCV LEL	LEVEL CONTROL VALVE COMBUSTIBLE GAS DETECTION
	CHANGE IN PIPE SIZE	I P	CURRENT TO PNEUMATIC	LELT LG	COMBUSTIBLE GAS DETECTION TRANSMITTER LEVEL GAUGE
	INLINE STRAINER	I A	INSTRUMENT AIR	LI LIC	LEVEL INDICATOR LEVEL INDICATOR CONTROLLER
0 	RESTRICTING ORFICE	ST	STEAM TRAP	LR LIR <u>LS</u>	LEVEL RECORDER LEVEL INDICATOR RECORDER LEVEL SWITCH (H-HIGH, L-LOW)

LT LEVEL TRANSMITTER LEVEL INDICATOR TRANSMITTER LIT LY LEVEL TRANSDUCER ME MOISTURE ELEMENT MI MOISTURE INDICATOR <u>PA</u> PRESSURE ALARM (H-HIGH, L-LOW) PC PRESSURE CONTROLLER PCV PRESSURE CONTROL VALVE PDM POSITIVE DISPLACEMENT METER ΡI PRESSURE INDICATOR PIC PRESSURE INDICATOR CONTROLLER PIR PRESSURE INDICATOR RECORDER РIТ PRESSURE INDICATOR TRANSMITTER PR PRESSURE RECORDER PRV PRESSURE REGULATING VALVE <u>PS</u> PRESSURE SWITCH (H-HIGH, L-LOW) <u>PSD</u> PRESSURE SHUTDOWN (H-HIGH, L-LOW) PSV PRESSURE SAFETY VALVE PT PRESSURE TRANSMITTER PVB PRESSURE VACUUM BREATHER ΡY PRESSURE TRANSDUCER RO RESTRICTING ORIFICE SAV SOLENOID ACTUATED VALVE SC SURGE CONTROLLER SCV SURGE CONTROL VALVE SDV SHUTDOWN VALVE <u>___</u> TEMPERATURE ALARM (H-HIGH, L-LOW) TC TEMPERATURE CONTROLLER TCV TEMPERATURE CONTROL VALVE ΤE TEMPERATURE ELEMENT ΤI TEMPERATURE INDICATOR TIC TEMPERATURE INDICATOR CONTROLLER TR TEMPERATURE RECORDER TIR TEMPERATURE INDICATOR RECORDER <u>TS</u> TEMPERATURE SWITCH (H-HIGH, L-LOW) <u>TSD</u> TEMPERATURE SHUTDOWN (H-HIGH, L-LOW) TT TEMPERATURE TRANSMITTER TIT TEMPERATURE INDICATOR TRANSMITTER ΤW THERMO WELL TY TEMPERATURE TRANSDUCER VI VIBRATION INDICATOR VR VIBRATION RECORDER VS VIBRATION SWITCH VSD VIBRATION SHUTDOWN VSDH VIBRATION SHUTDOWN HIGH VT VIBRATION TRANSMITTER VIT VIBRATION INDICATOR TRANSMITTER VALVE POSITION INDICATOR XVPI XVPS VALVE POSITION SWITCH LIMIT SWITCH (O-OPEN;C-CLOSED) <u>ZS</u>

BALL

CHECK

GLOBE

NEEDLE

PLUG

GATE

LEVEL SHUTDOWN (H-HIGH, L-LOW)

•		T				
·						
6	GENERAL REVISIONS	43581	KN	05.11.09	CT	05.11.09
5	CASING GAS TAKE-OFF POINT ON PRODUCERS REVISED	43581	СТ	05.09.20	<u> </u>	<u> </u>
4	ISSUED FOR CONSTRUCTION	43581	СТ	05.06.20	RDB	05.06.10
3	RE ISSUED FOR APPROVAL	43581	CT	05.04.15	<u> </u>	
2	GENERAL REVISIONS	43581	CT	05.03.28		
1		43581		05.03.03		
NO	PRELIMINART ISSUE	PP01 No		DATE		<u> </u>

	i/s utillbor 38 H i/s utillbor 51 H i/s utillbor 38 H	60-300PX-146 FUEL CAS HEADER SHEET 11 89-300PSY-107 GROUP SHEET 7 89-300PZ-169 STEAM TO LONG STRING SHEET 7 89-300PZ-168 STEAM TO SHORT STRING SHEET 7 60-300PSY-131 ANNULUS CAS	
		ANNULUS GAS SHEET 7	>
SHEET NUMBER	DRAWING NUMBER		REV
4 OF 14	F-43581-F-00	0-01	6

	BLDG, LIMITS
	219-300PSY-100 GROUP HEADER SHEET 8 89-300PSY-113
	TEST HEADER SHEET 10 273-300PZ-165 STEAM HEADER SHEET 12 168-300PSY-130
-123	ANNULUS HEADER SHEET 9

BLD	G.	LIMI	rs
			_

SHEET NUMBER	DRAWING NUMBER	REV
7 OF 14	F-43581-F-00-01	6

SHEET NUMBER	DRAWING NUMBER	REV
13 OF 14	F-43581-F-00-01	6

SHEET NUMBER	DRAWING NUMBER	REV
14 OF 14	F-43581-F-00-01	6

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 47 of 70

APPENDIX II

PROCESS FLOWSHEET (OIL TREATING)

				\bigcirc	LOCALLY MOUNTED INSTRUMENT
\bowtie	GATE VALVE (GA)		INSULATION (H-HOT, C-COLD)	$\tilde{\ominus}$	MOUNTED ON MAIN
[XX]	BALL VALVE (BA)	-{}	INSULATION & HEAT TRACE	$\stackrel{\smile}{\ominus}$	LOCAL PANEL MOUNTED
	PLUG VALVE (PL)		PROCESS PIPING	\Box	DISTRIBUTED CONTROL SYSTEM ITEMS
×	NEEDLE VALVE (NE)	// // //	PNEUMATIC SIGNAL	\ominus	DISTRIBUTED CONTROL SYSTEM AUXILIARY OPERATOR'S INTERFACE
	GLOBE VALVE (GL)		CAPILLARY TUBING	\bigcirc	DISTRIBUTED CONTROL SYSTEM ITEMS (COMPUTER FUNCTION)
\sim	CHECK VALVE (CH)		ELECTRICAL SIGNAL	\square	PROGRAMMABLE LOGIC CONTROL SYSTEM
[k]	BUTTERFLY VALVE (BU)	- <u>tt-</u> -	HYDRAULIC SIGNAL		PROGRAMMABLE LOGIC CONTROL SYSTEMS ACCESSIBLE TO OPERATOR
	SOCKET WELD VALVE	-~-~~	ELECTROMAGNETIC/SONIC SIGNAL		AUX. PROGRAMMABLE LOGIC CONTROL SYSTEMS ACCESSIBLE TO OPERATOR
	SCREWED VALVE	-00	SOFTWARE OR DATA LINK		BLOWDOWN VALVE
	FLANGED VALVE	A.O.	AIR TO OPEN (FAIL CLOSED)	(BCS)	BURNER CONTROL STATUS
Î.	CONTROL VALVE WITH	A C	AIR TO CLOSE (FAIL TO OPEN)	(BE)	BURNER ELEMENT
Ģ	DIAPHRAGM ACTUATOR			BZ	BURNER IGNITOR
	PISTON ACTUATOR	C.S.O.(C)	CAR SEAL OPEN (CLOSED)		CONTROL VALVE
k	PRESSURE REGULATOR	E.S.D.	EMERGENCY SHUTDOWN		DIFFERENTIAL PRESSURE INDICATOR
	SOLENOID VALVE	F.P.	FULL PORT		DIFFERENTIAL PRESSURE SWITCH
R	ANGLE CHOKE	R.P.	REGULAR PORT	(ESDV)	EMERGENCY SHUTDOWN VALVE
	INLINE CHOKE	N.C.	NORMALLY CLOSED	(FAH)	FLOW ALARM HIGH, L-LOW
\vdash	Y-STRAINER	N.O.	NORMALLY OPEN	(FC)	FLOW CONTROLLER
k k k	PRESSURE SAFETY VALVE	S.R.	SPRING RETURN	FDSD	FIRE DETECTION SHUTDOWN
	ORIFICE METER RUN	+	SPEC BREAK	(FSDH)	FLOW SHUTDOWN HIGH, L-LOW
, D	TURBINE METER OR		SUPPLIED BY OTHERS	(FE)	FLOW ELEMENT
K	SPECTACLE BLIND, OPEN (CLOSED)	\bigcirc	TIE IN NUMBER	(FFSD)	FLAME FAILURE SHUTDOWN
•	CHANGE IN PIPE SIZE	×	TIE IN LOCATIONS	F	FLOW INDICATOR
		٦		FIR	FLOW INDICATOR RECORDER
F.	INLINE STRAINER		PNEUMATIC TO CURRENT	(FR)	FLOW RECORDER
		k	CURRENT TO PNEUMATIC		FLOW SWITCH (H-HIGH, L-LOW)
11 UPDATED AS PER	MECHANICAL FLOWSHEET	33500 CK 05.08.15			SENERAL NOTES: 1. Tore commission memory interaction management DERM. Commission (Demonstration (Demonstration for Commission for Commissio
9 REVISED FOR DB 8 REVISED FOR DB	M M	33500 RG 04.03.31			Bower Duscrear in Statis Bowerse (D. *** CHR., He compare Alls and the second and the feet all construction of the present and interformer by compare they for it all construct refrestorements by compare they for it all construct refrestorements
7 REVISED FOR CLI 6 REVISED	ENT APPROVAL	33500 RG 04.03.10 33500 CT 04.02.10			VIE CONSIDERATED FRANT, PROFT TO E CONSERVENT OF ANY CONSTRUCTOR AND OF DOCAMON IT SHALL BE THE RESPONDENCY OF NO OF DOCAMON IT SHALL BE THE RESPONDENCY OF NO OF DOCAMON IT SHALL BE THE RESPONDENCY OF
5 REVISED 4 REVISED		33500 RG 04.02.03 33500 RG 04.01.08			OF BUILDERS OF AFT THINK LEULIDES, EDITEDIT OF BUILDERS OF AFT THINK LEULIDES, EDITEDIT 3. ANY REASONS WOR TO DESTING EDUTION, PAPER OF SUBTIONED, OR A FOLLOWING KOT SOURCED BY
NO.	REVISION	PROJ. No. BY DATE CH	IK.		E.D.R. EMR. LTD. IS ONLY SHORE AS A REPRESENTATION OF 1940T EXERTS AND MUST BE VERIFIED BY THE ORDER.

NO.

HOA HAND/OFF/AUTOMATIC (H2S) H2S GAS DETECTION H2ST H2S GAS DETECTION TRANSMITTER (LAH) LEVEL ALARM HIGH, L-LOW LC LEVEL CONTROLLER LCV LEVEL CONTROL VALVE LEL COMBUSTIBLE GAS DETECTION LELT COMBUSTIBLE GAS DETECTION TRA LG LEVEL GAUGE (U) LEVEL INDICATOR LEVEL INDICATOR CONTROLLER LEVEL INDICATOR RECORDER LEVEL RECORDER (LS) LEVEL SWITCH (H-HIGH, L-LOW) (LSDH) LEVEL SHUTDOWN HIGH, L-LOW LT LEVEL TRANSMITTER LZ LEVEL TRANSDUCER ME MOISTURE ELEMENT MI MOISTURE INDICATOR OSS OVERSPEED SWITCH OSSD OVERSPEED SHUTDOWN (PAH) PRESSURE ALARM HIGH, L-LOW PC PRESSURE CONTROLLER PCV PRESSURE CONTROL VALVE (PDM) POSITIVE DISPLACEMENT METER PI PRESSURE INDICATOR PIC PRESSURE INDICATOR CONTROLLER PRESSURE INDICATOR RECORDER PR PRESSURE RECORDER

(FZ)

FLOW TRANSDUCER

Bower Damberger Rolset Engineering Ltd.

1 OF 8

11

F-33500-F-00-02

Dai

DATE 03.08.29

14-28-95-12 W4

LEGEND

	PRV	PRESSURE REGULATING VALVE
	PS	PRESSURE SWITCH (H-HIGH, L-LOW)
	PSDH	PRESSURE SHUTDOWN HIGH, L-LOW
2	PSV	PRESSURE SAFETY VALVE
	PT	PRESSURE TRANSMITTER
	PVB	PRESSURE VACUUM BREATHER
	PY	PRESSURE TRANSDUCER
	RO	RESTRICTING ORIFICE
ANSMITTER	SAV	SOLENOID ACTUATED VALVE
	SC	SURGE CONTROLLER
	SCV	SURGE CONTROL VALVE
	SDV	SHUTDOWN VALVE
	TAH	TEMPERATURE ALARM HIGH, L-LOW
	TC	TEMPERATURE CONTROLLER
	TCV	TEMPERATURE CONTROL VALVE
	П	TEMPERATURE INDICATOR
	TIR	TEMPERATURE INDICATOR RECORDER
	TS	TEMPERATURE SWITCH (H-HIGH, L-LOW)
	TSDH	TEMPERATURE SHUTDOWN HIGH, L-LOW
	Π	TEMPERATURE TRANSMITTER
	TW	THERMO WELL
	Ŷ	TEMPERATURE TRANSDUCER
	(V)	VALVE ACTUATION INDICATOR
	vs	VIBRATION SWITCH
	VSD	VIBRATION SHUTDOWN
	VSDH	VIBRATION SHUTDOWN HIGH
	TV	VIBRATION TRANSMITTER
२	XVPI	VALVE POSITION INDICATOR
	XVPS	VALVE POSITION SWITCH
	ZS	LIMIT SWITCH
	<u></u>	
		U DEEK CHEEK Energy Limited
	JOSLYN	PHASE 2 SAGD FACILITY
th	PROCESS	FLOWSHEET (OIL TREATING)
	SHEET NUMBER	DRAWING NUMBER REV

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 48 of 70

APPENDIX III

PROCESS FLOWSHEET (WATER AND STEAM)

\bowtie	GATE VALVE (GA)		INSULATION (H-HOT, C-COLD)
	BALL VALVE (BA)		INSULATION & HEAT TRACE
	PLUG VALVE (PL)		PROCESS PIPING
\bowtie	NEEDLE VALVE (NE)	 	PNEUMATIC SIGNAL
	GLOBE VALVE (GL)	* * *	CAPILLARY TUBING
7	CHECK VALVE (CH)		ELECTRICAL SIGNAL
` •.	BUTTERFLY VALVE (BU)		HYDRAULIC SIGNAL
	SOCKET WELD VALVE	- ~~~	ELECTROMAGNETIC/SONIC SIGNAL
	SCREWED VALVE	-00	SOFTWARE OR DATA LINK
	FLANGED VALVE	A.O.	AIR TO OPEN (FAIL CLOSED)
Å	CONTROL VALVE WITH DIAPHRAGM ACTUATOR	A.C.	AIR TO CLOSE (FAIL TO OPEN)
A	CONTROL VALVE WITH PISTON ACTUATOR	C.S.O.(C)	CAR SEAL OPEN (CLOSED)
R	PRESSURE REGULATOR	E.S.D.	EMERGENCY SHUTDOWN
□ □	SOLENOID VALVE	F.P.	FULL PORT
R	ANGLE CHOKE	R.P.	REGULAR PORT
	INLINE CHOKE	N.C.	NORMALLY CLOSED
Ρ	Y–STRAINER	N.O.	NORMALLY OPEN
k k k	PRESSURE SAFETY VALVE	S.R.	SPRING RETURN
	ORIFICE METER RUN	-• •	SPEC BREAK
	TURBINE METER OR POSITIVE DISPLACEMENT METER	A	SUPPLIED BY OTHERS
8	SPECTACLE BLIND, OPEN (CLOSED)	\bigcirc	TIE IN NUMBER
	CHANGE IN PIPE SIZE	Х	TIE IN LOCATIONS
A	INLINE STRAINER	P	PNEUMATIC TO CURRENT
		F	CURRENT TO PNEUMATIC

(FZ) FLOW TRANSDUCER LOCALLY MOUNTED INSTRUMENT (HOA) HAND/OFF/AUTOMATIC MOUNTED ON MAIN \ominus CONTROL ROOM PANEL (H25) H2S GAS DETECTION Θ LOCAL PANEL MOUNTED INSTRUMENT (H2ST) H2S GAS DETECTION TRANSMITTER \bigcirc DISTRIBUTED CONTROL SYSTEM ITEMS (LAH) LEVEL ALARM HIGH, L-LOW DISTRIBUTED CONTROL SYSTEM AUXILIARY OPERATOR'S INTERFACE \sim \Box (LC) LEVEL CONTROLLER DISTRIBUTED CONTROL SYSTEM \ominus ITEMS (COMPUTER FUNCTION) (LCV) LEVEL CONTROL VALVE ∇ PROGRAMMABLE LOGIC \square CONTROL SYSTEM (LEL) COMBUSTIBLE GAS DETECTION \bigcirc PROGRAMMABLE LOGIC CONTROL SYSTEMS ACCESSIBLE TO OPERATOR (LELT) COMBUSTIBLE GAS DETECTION TRAN \bigcirc AUX. PROGRAMMABLE LOGIC CONTROL SYSTEMS ACCESSIBLE TO OPERATOR (LG) LEVEL GAUGE (BDV) BLOWDOWN VALVE (u) LEVEL INDICATOR BCS BURNER CONTROL STATUS (LIC) LEVEL INDICATOR CONTROLLER (BE) BURNER ELEMENT LEVEL INDICATOR RECORDER (BZ) BURNER IGNITOR LEVEL RECORDER (cv) CONTROL VALVE (LS) LEVEL SWITCH (H-HIGH, L-LOW) DIFFERENTIAL PRESSURE INDICATOR (LSDH) LEVEL SHUTDOWN HIGH, L-LOW (DPS) DIFFERENTIAL PRESSURE SWITCH (IJ) LEVEL TRANSMITTER ESDV EMERGENCY SHUTDOWN VALVE (LZ) LEVEL TRANSDUCER (FAH) FLOW ALARM HIGH, L-LOW (ME) MOISTURE ELEMENT (FC) FLOW CONTROLLER (M)MOISTURE INDICATOR (FCV) FLOW CONTROL VALVE (oss) OVERSPEED SWITCH FDSD FIRE DETECTION SHUTDOWN OSSD OVERSPEED SHUTDOWN FSDH FLOW SHUTDOWN HIGH, L-LOW PAH PRESSURE ALARM HIGH, L-LOW (FE) FLOW ELEMENT PC PRESSURE CONTROLLER (FFSD) FLAME FAILURE SHUTDOWN (PCV) PRESSURE CONTROL VALVE (FI) FLOW INDICATOR PDM POSITIVE DISPLACEMENT METER (FIR) FLOW INDICATOR RECORDER (PI) PRESSURE INDICATOR (FR) FLOW RECORDER PIC PRESSURE INDICATOR CONTROLLER (FS) FLOW SWITCH (H-HIGH, L-LOW) PIR PRESSURE INDICATOR RECORDER (FQI) FLOW TOTALIZER PR PRESSURE RECORDER

LEGEND

ACCORDED IN		AND DESCRIPTION OF A DE	Question and the second	-	una de combra de cado				
12	UPDATED AS PER MECHANICAL FLOWSHEET	33500	CK	05.08.17	7			BY DATE	
11	REVISED	33500	LEV	05.02.23	3	1	GENERAL NUILS:	DRN. RG 04.06.07	
10	REVISED	33500	CT	04.10.20		1	1. YOST CONSTRUCTOR DOWNED ARE EDUCATED TO DE CONSTRUCTOR CONVEE INFORMATION FORMADED TO PORES DUMORCES PORENT DOWNED TO BY	СНК.	1 4 / 4 /
9	REVISED FOR DBM	33500	RG	07.08.3	1	1	THE OWNER'S FIELD SUPERVISORS AND ON HIRED COMPACTORS. ANY CHANGES NOT DOCUMENTED WILL	APP'D.	
8	SWITHCED TO EVAPORATOR SYSTEM	33500	RG	04.07.28	3	1	INT APPEAR ON THE DAMINAS AND THEREFORE THE DAMING WAY NOT BE AN ACCUMATE REPRESENTATION OF THE CONSTRUCTION FROM THE	L.S.D. 14-28-95-12 W4	
7	REVISED FOR DBM	33500	RG	04.04.0	1	1	2. PROR TO THE COMMENCEMENT OF MAY CONSTRUCTION		
6	REVISED FOR CLIENT APPROVAL	33500	RG	04.03.15	5	1	HE OR EXAMPLE I SHALL BE HE REPORTED OF THE OWNERS REPRESENTION TO VEHICY THE LOCATION ME STATUS OF MAY PRIME REPORTED. FORMATION		
5	REVISED	33500	CT	04.02.12	2		OF BURDINCE.		I Rower Damperger K
4	REVISED	33500	RG	04.01.30		T	3. ANT REVENUES WARE TO DESTRIC EXCEPTION AND AN ANTICAL ON A FACILITY NOT DESIGNED BY RELECTINGL ON A FACILITY NOT DESIGNED BY RELE. DIG. LTL. IS ONLY SHOWN AS A REPORTING/CON-		Engine
NO	REVISION	PROJ. No.	BY	DATE	CHK.	1	OF WHAT DUSTS AND WUST BE VEHITED BY THE OWNER.		Lingite

(ғт)

FLOW TOTALIZER

	PRV	PRESSURE REGULATING VALVE
	PS	PRESSURE SWITCH (H-HIGH, L-LOW)
	PSDH	PRESSURE SHUTDOWN HIGH, L-LOW
ITTER	PSV	PRESSURE SAFETY VALVE
	T	PRESSURE TRANSMITTER
	PVB	PRESSURE VACUUM BREATHER
	PY	PRESSURE TRANSDUCER
I	RO	RESTRICTING ORIFICE
TRANSMITTER	SAV	SOLENOID ACTUATED VALVE
	SC	SURGE CONTROLLER
	scv	SURGE CONTROL VALVE
۲	SDV	SHUTDOWN VALVE
	TAH	TEMPERATURE ALARM HIGH, L-LOW
		TEMPERATURE CONTROLLER
OW)	TCV	TEMPERATURE CONTROL VALVE
W	(n)	TEMPERATURE INDICATOR
	TIR	TEMPERATURE INDICATOR RECORDER
	(2T)	TEMPERATURE SWITCH (H-HIGH, L-LOW)
	TSDH	TEMPERATURE SHUTDOWN HIGH, L-LOW
	Π	TEMPERATURE TRANSMITTER
	TW	THERMO WELL
	Y	TEMPERATURE TRANSDUCER
wo	(V)	VALVE ACTUATION INDICATOR
	vs	VIBRATION SWITCH
	VSD	VIBRATION SHUTDOWN
R	VSDH	VIBRATION SHUTDOWN HIGH
	VT	VIBRATION TRANSMITTER
OLLER	XVPI	VALVE POSITION INDICATOR
ER	XVPS	VALVE POSITION SWITCH
	ZS	LIMIT SWITCH
		A
		DEER CREEK Energy Limited
	JOSLYN	PHASE 2 SAGD FACILITY
lseth	PROCESS FL	UWSHELI (WAIER & SIEAM)

SHEET NUMBER

1 OF 9

DRAWING NUMBER

F-33500-F-00-03

REV

12

and the second se	SHEET NUMBER			DRAWING NUMBER	REV
	9	OF	9	F-33500-F-00-03	12

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 49 of 70

APPENDIX IV

PROCESS FLOWSHEET (GLYCOL)

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 50 of 70

APPENDIX V

WELL PAD CONCEPTUAL PLOT PLAN

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 51 of 70

APPENDIX VI

SITE PLOT PLAN

DEER CREEK ENERGY LIMITED

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 52 of 70

APPENDIX VII

BITUMEN, PRODUCED WATER, GAS, SCO, AND SOURCE WATER ANALYSES

J:\SECRETARIAL\2003 FILES\33500\DBM\DBM REV 3\DBM DOCUMENT REV 3A.DOC

LABORATORY TEST RESULTS

JOB NUMBER: 52137-2004-0980

CLIENT I.D: Merv Jones DATE SAMPLED: October 27, 2003 SAMPLE POINT: Petro-Canada Heavy Oil WORK DESCRIPTION:

LABORATORY I.D.: 52137-04-0980-1 DATE RECEIVED: 04-02-05 TIME RECEIVED: REMARKS:

TEST DESCRIPTION	FINAL RESULT	DETECTION	UNIT OF MEASURE	TEST METHOD	DATE	TECH
*Measured Density @ 35°C	998.7		kg/m ³	ASTM D-5002	04/02/10	JE
Measured Density @ 80 °C	970.5		kg/m ³	ASTM D-5002	04/02/10	JE
Calculated Density @ 15 °C API Gravity @ 15.6 °C	1010.9 8.4		kg/m ³	volume correction		
Kinematic Viscosity @ 60 °C	3016		cSt.	ASTM D-445	04/02/10	JE
				-		
* The sample was too h	eavy and viscous	for an accurate of	density measur	ement at 15.0 °C	<u></u>	
				ORE LABORATORIES		
			2 C	810 - 12th Street N.E. ALGARY, ALBERTA T2E	7P7	

LABORATORY TEST RESULTS

JOB NUMBER: 52137-2004-0980 CUSTOMER: Deer Creek Energy Ltd.

CLIENT I.D: **Merv Jones** DATE SAMPLED: October 27, 2003 SAMPLE POINT: Petro-Canada Heavy Oil WORK DESCRIPTION:

LABORATORY I.D.: 52137-04-0980-1 DATE RECEIVED: 04-02-05 TIME RECEIVED:

REMARKS:

TEST DESCRIPTION	FINAL RESULT	DETECTION	UNIT OF MEASURE	TEST METHOD	DATE	TECH
Simulated Distillation			°C	ASTM D-5307	04/02/12	вн
I.B.P.	218.6					
5% Off	301.7					
10% Off	346.0					
15% Off	382.1					
20% Off	416.4					
25% Off	447.5					
30% Off	479.1					
35% Off	511.6					
38% Off	535.9					
Percent Residue	61.81					
			I	,	<u>_</u>	
			2 C	ORE LABORATORIES 810 - 12th Street N.E. ALGARY, ALBERTA T2E	7P7	

LABORATORY TEST RESULTS

JOB NUMBER: 52137-2004-0980

CLIENT I.D:	Merv Jones
DATE SAMPLED:	October 27, 2003
SAMPLE POINT:	Petro-Canada Heavy Oil
WORK DESCRIPTION:	

LABORATORY I.D.: 52137-04-0980-1 DATE RECEIVED: 04-02-05 TIME RECEIVED:

REMARKS:

TEST DESCRIPTION	FINAL RESULT	DETECTION	UNIT OF MEASURE	TEST METHOD	DATE	TECH
Pressurized Viscosity @ 120 °C			cР	Cambridge	04/02/23	DMc
13 790 kPa (g)	147.4					
12 065 kPa (g)	142.7					
10 342 kPa (g)	137.6					
8 618 kPa (g)	133.3					
6 895 kPa (g)	128.8					
5 171 kPa (g)	124.3					
3 447 kPa (g)	119.9					
150 145 140 135 130 125 120 115 110 105				y = 0.0027x + R ² = 0.99	110.56 95	
0 5	5000 Pressure (k	10000 Pag)	150	00		
					<u>_</u>	
			C			
			2	810 - 12th Street N.E.	707	

			Group	Group	Group	Group	Group
			Chemex	Chemex	Chemex	Chemex	Chemex
		· · · · · · · · · · · · · · · · · · ·	93/4/06	93/5/20	93/5/21	93/9/24	93/11/01
		~					
Sodium	Na	mg/L	392	123	45	507	553
Potassium	K	mg/L	10.2	11.7	10	17.4	19.2
Calcium	Ca	mg/L	7.2	6.0	43.2	4.1	4.0
Magnesium	Mg	mg/L	2.6	1.7	3.0	1.2	1.1
Banum	Ba	mg/L	0.04	< 0.1	<0.1	0.2	<0.1
Tuon	Sr Ea	mg/L	0.2	0.1	0.1	0.2	0.2
Iron	re D	mg/L	0.1	<0.1	<0.1	<0.1	0.1
DOION	В						
Chloride	Cl	mg/L	369	159	112	705	815
	Br	mg/L					
Iodine	I	mg/L					
Bicarbonate	HCO ₃	mg/L	202	114	81	226	192
Sulfate	SO_4	mg/L	136	1	14	65	1
Carbonate	CO_3	mg/L	0	<1	<1	<1	<1
Hydroxide	OH	mg/L	0	<1	<1	<1	<1
Hydrogen Sulphide	H_2S	mg/L		nil	nil	nil	nil
Silicon	Si		79	72.3	71.6		
Total Iron		mg/L	0.3	0.14	0.06	0.1	0.2
Total Silica		mg/L		115	118	232	206
Manganese		mg/L	0.02	0.01	0.01	< 0.1	< 0.1
Oil & Grease		mg/L	13.3	14	16	40	118
Lithium		mg/L	0.31	0.169	0.113	0.39	0.64
TDS			1,440				
Total Solids							
	evaporate	ed mg/L					
	ignitio	n mg/L		360	310	1900	1580
	calculate	ed mg/L		359	267	1411	1488
Relative Density				1.0000	1.0000	1.0010	0.9910
pН			7.71	8.00	7.20	7.40	7.60
Resistivity	Ohm-m			13.800	18.600	3.8200	3.4800
Total Hardness		mg/L	28.4	22	120	15	15
Total Alkalinity		mg/L	166	93	66	185	157

Phase B Produced Water Analysis

GAS ANALYSIS

Poor or Zone Tervar 1	Image: Control of the standard of the standar
Pool or Zone Tervar 1	LSD Wew ID NA DEER CREEK Name of Sancer Container WELLHEAD (CASING) 11635,11696 Sance Forx Container Identity Sance Forx Sance Gathering Park Sance Forx Sance Gathering Park V2 Interval 3 Sance Forx Sance Gathering Park V3 GRD V8 GRD
Poor or Zone Itervar 1	LSD Wei /2 NA DEER CREEK Name of Sampler Contrainer WELLHEAD (CASING) 11635,11696 Sample Fort Contrainer (denta) Sample Fort Sample Gathering Fort Sample Fort Sample Gathering Fort Name of Sample Gathering Fort Sample Gathering Fort Southon Gathering Fort Sample Fort Sample Gathering Fort Sample Gathering Fort Southon Gathering Fort Sample Gathering Fort Southon Gathering Fort Sample Fort Gathering Fort Sample Gathering Fort Southon Gathering Fort Sample Gathering Fort Southon Gathering Fort Sample Gathering Fort Sample Gathering Fort
Pool or Zone Ilenaul 1 - Intervel 2 200 3ouros 20 200 3ouros 20 200 3ouros 20 20 3ouros 20 20 3ouros 20 20 3ouros 20 20 3ouros 20 20 3ouros 20 20 3ouros 20 20 3ouros 20 20 3ouros 20 20 3ouros 20 20 3ouros 20 20 20 3ouros 20 20 20 20 20 20 20 20 20 20	Image of Gampier DEER CREEK WELLHEAD (CASING) 11635,11696 Service Prior 11635,11696 Service Prior 11635,11696 Service Prior 11635,11696 Service Same River Service Gameiry 12 Image Prior 12 Image Prior 13 Image Prior 14 Image Prior 15 Image Prior 16 Image Prior 17 Image Prior 18 Image Prior 100 21.6 100 21.6 100 21.6 100 21.6 100 21.6 100 21.6 100 21.6 100 21.6 100 21.6 100 21.6 100 21.6 100 21.6 100 21.6 1000 21.6 100 21.6 100 21.6 100 21.6 100 2004/10/25 100 21.6 100 2004/10/25 100 21.6 100 2004/10/25 100 2004/10/25 <t< td=""></t<>
Poor or Zone Itervar 1	Marine of Sampler Company WE:LLHEAD (CASING) 11635, 11696 Sample Foux 11635, 11696 Sample Foux Sample Foux 12 Interval 3 12 Interval 3 12 Interval 3 13 Interval 3 14 Interval 3 15 Interval 3 15 Interval 3 16 Interval 3 17 Interval 3 18 Interval 3 19 Interval 3 100 21.5 300 100 21.5 Interval 3 300 2004/10/25 2004/10/20 2004/10/25 2004/10/25 2004/10/25 Date Record Interval 3 Interval 3 Interval 3 Interval 3 Interval 4 Interval 4 Interval 5 Interval 5 Interval 5 Interval 7 Interval 7
Poor or Zone tervar 1	WELLHEAD (CASING) 11635, 11696 Sance Poirs Container Identity Sance Poirs Sance Sance Gathering Pairs Sance Poirs Sance Gathering Pairs Sance Revision Gate Well Fluid Status Vell Status Pairs Sance Gathering Pairs Sance Revision Gate Vell Status Type Well Tope Vell Type Sance Revision Gate Gate or Containsate Project Source 2004/10/25 Source 2004/10/25 Date Revision Reported Anaryst PROPERTIES 1.307 Mosure Revision Revis
LIQUID VCLUMS Harvar 1	Samue Port Container identity Percent / 2 Interval 3 Bevacons (m) Sample Gathering Park Southon Gats 2 Interval 3 Image Pressures (Park Sample Gathering Park Southon Gats ge Pressures (Park Image Pressures (Park Weil Fluid Status Weil Status Type Weil Type 300 100 21.6 Image Pressures (Park Weil Status Type Weil Type 300 100 21.6 Gats or Containsate Project Loance No. 1000/10/20 2004/10/25 2004/10/25 MW 2004/10/20 2004/10/25 2004/10/25 MW Vale Received Date Received Analyst
LIQUID VCLUME LIQUID VCLUME MILIM3 AIR FREE AS REC D	Image: Pressure of a served Servede Gamering Park Source get Pressure of a gameric of a served GRD Weil Flud Status Type Weil Status Type get Pressure of a gameric of a served 100 21.5 Gas or Contennate Project Licence No. 2004/10/20 2004/10/25 2004/10/25 MW Must Pressure Project Licence No. 2004/10/20 2004/10/25 2004/10/25 MW Must Pressure Pressure Project Licence No. PROPERTIES Calculated Relative Densities Anaryst Interview Pressure Pres
LIQUIC VCLUME LIQUIC VCLUME mL/m3 AIR FREE EE AS RECTO	12 Intervel 3 Service Samening Park Soution Gas 12 Intervel 3 Image Pressumes APa Soution Gas 1300 Image Pressumes APa Temperature 10 Well Flud Status Type Well Status Mode 100 21.6 Soution Gas Mell Type Mell Type 300 100 21.6 Gas or Containsate Project Loance Mol 100/10/20 2004/10/25 2004/10/25 MW 100 2004/10/25 2004/10/25 MW 100 Date Revision Reported Anaryst PROPERTIES 11.307 0.837 Mosure Pres as Samoed 1.307 0.837 11.307 0.837 Mosure 3 Act Gas Free
LIQUID VCLUME mL/m3 AIR FREE EE AS REC D	NB GRD Weil Flux Solution Gas ge Pressures APa Temperature 'C Weil Status Type Weil Status Type 300 100 21.6 Gas or Contensate Project Licence Mo. 2004/10/20 2004/10/25 2004/10/25 MW 2004/10/20 2004/10/25 2004/10/25 MW 2004/10/20 2004/10/25 2004/10/25 MW 2016 Terceaved Date Revision Reported Anaryst PROPERTIES Calculated Mole Weight Calculated Relative Densities 1.307 0.837 Moster Pres a Sempled 1.307 0.837 7.9 Train Calculated Properties Calculated Pseudo Critical Properties Moster 3 And Cas Free
LIQUID VOLUME mLm3 AIR FREE AS REC D	NB GRD Weil Flud Stans Weil Stans Mode ge Pressures APa Temperature 'C Weil Stans Type Weil Stans Type 300 100 21.6 Gas or Contensate Project Licence Mo. 2004/10/20 2004/10/25 2004/10/25 MW 2004/10/20 2004/10/25 2004/10/25 MW 2004/10/20 2004/10/25 2004/10/25 MW 2016 Facenved Date Revision Reported Anaryst PROPERTIES Calculated Mole Weight Calculated Relative Densities 1.307 0.837 Moster Pres a Sempled 37.9 Total Total Calculated Pseudo Critical Properties
LIQUID VOLUME mLm3 AR FREE AS REC D	ge Pressures :Pa Temperature 'C Weil Status Type Weil Type 300 100 21.6 Gas or Contensate Project Licence No. 100/10/20 2004/10/25 2004/10/25 MW Jate Received Date Received Anaryst PROPERTIES Calculated Mole Weight Calculated Relative Densities 1.307 0.837 Moster Free as Sampled 1.307 0.837 Total Termed Calculated Properties Calculated Pseudo Critical Properties Moster 3 Act Date Received
LIQUID VOLUME MLIM3 AIR FREE AS REC D	300 100 21.6 Well Status Type Well Type 300 3s Received 3s Received Gas or Concensate Royect Loence No. 1004/10/20 2004/10/25 2004/10/25 MW Jate Received Date Received Analyst PROPERTIES Image: Service 1.307 0.837 Nosure Received Xosure Received Xosure 3 Acc Das Received
LIQUID VCLUME milm3 AIR FREE AS REC D	As Received 21.0 300me As Received Gas or Contentsate Registre Loande No. 2004/10/20 2004/10/25 2004/10/25 MW Date Revision Reported Analysis PROPERTIES Re Calculated Mole Weight Calculated Relative Densities C
LIQUID VOLUME mL/m3 AIR FREE AS REC D	Calculated Pseudo Critical Properties Calculated Pseudo Critical Properties Calculated Pseudo Critical Properties Calculated Pseudo Critical Properties
LIQUID VOLUME mL/m3 AIR FREE AS REC D	Model 2004/10/25 MW Jate Record Date Record Analyst PROPERTIES Memory Tree as Sempled 37.9 Tree Tree Tree Calculated Pseudo Critical Properties Calculated Pseudo Critical Properties
EE	Eate Revision Reported Date Revision Revision Revision Reported Date Revision Re
LIQUID VOLUME MLIMJ AIR FREE AS REC D	AE Calculated Mole Weight Calculated Relative Densities Calculated
LIQUID VOLUME mL/m3 AIR FREE AS REC D	PROPERTIES Calculated Mole Weight Calculated Relative Densities Total Tota
EE AS REC D	Calculated Mole Weight Calculated Relative Densities Calculated R
AIR FREE AS REC D	Calculated Mole Weight — Calculated Relative Densities — 37.9 Tota 57- Calculated Relative Densities — 1.307 0.837 Mosure Free as Samoed Mosure 3 Act Cas Free Calculated Pseudo Critical Properties —
AR FREE AS RECD	37.9 1.307 0.837 Total 7- Mosure Free as Sampled Calculated Pseudo Critical Properties
AS REC D	37.9 1.307 0.837 Trans 7- Mossue Free as Samped Mossue i Acc Cas Free Calculated Pseudo Critical Properties
	Tota Tr Moisure Pree as Samped Mosaure & Act Cas Pree Calculated Pseudo Critical Properties
	Calculated Pseudo Critical Properties
	Calculated Pseudo Critical Properties
	As Samped
	ACId Last rite
	6359.1 271.7 4114.6 199.8
	Calculated Comen Manifer Male (1971)
3.21	Gas Compressibility
3.68	
0.00	APHC 401-5 APHC 01.9967
4.00	The model may ALF TAL (Mich RD) ACIC Gas rege C7 + as Received
4.30	
12.62	Hydrogen Sulphide
	Un Site In Lab
18.06	
20.29	
	Gasac (mbe gony Tuewer (mbe %)
29 54	
28.51	Onsite analysis is required for accurate source H2S content.
64.19	H2S degrades variably in all sample containers and is also matrix decendant.
154.93	
154.93	
	12.62 18.06 20.29 28.51 64.19 154.93

Remarks:

GAS ANALYSIS

An estimated final gas composition was used and is as follows

<u>COMPONENT</u>	<u>mol %</u>
Hydrogen Sulphide	3.00
Carbon Dioxide	48.50
Methane	48.50

SUNCOR BLEND ASSAY Suncor Blend Name Date issued

OSA 4/23/2002

This assay is an estimate, developed from blend component samples at source. There may be variations in properties of the blend from time to time.

	Whole Crude	Light Naphtha	Heavy Naphtha	Jet	Light Diesei	Heavy Diesel	Swing	Gas Oil	Heavy Gas Oil	Vacuum Gas Oil
TBP TEMPERATURE AT START OF CUT, F	-44	-44	200	340	470	550	650	700	800	900
TBP TEMPERATURE AT END OF CUT, F	1000	200	340	470	550	650	700	800	900	1000
YIELD OF CUT (LV% OF CRUDE)	100	10.6	12.6	11.5	89	16.5	9.6	17.0	10.1	22
YIELD OF CUT (wt% OF CRUDE)	100	8.0	11.1	11.2	9.1	17.4	10.3	19.5	11.1	2.5
API GRAVITY 15°C	33.7	88.1	56.4	37.9	30.5	26.0	23.0	20.6	18.8	17.1
SPECIFIC GRAVITE 15/15 C	0.857	0.644	0.753	0.835	0.873	0.898	0.916	0.930	0.942	0.952
ACID NUMBER (TAN), mg KOH/g	0.05	0.01	0.02	0.03	0.04	0.05	0.07	0.07	0.09	0.16
ANILINE POINT, "F			127	119	128	130	132	145	172	201
ASH, wt%	0.2					1				
ASPHALTENES, wt%	< 0.1						0.07	0.08	0.12	0.36
BS&W, VOI%	< 0.1				+					
CARBON RESIDUE (MCRT) wt%	0.02	0.2	0.4	0.8	1.1	1.6	2.3	3.0	3.5	3.6
CETANE INDEX	0.02		······	38.2	419	44.0	43.6	<0.01	0.02	0.75
CETANE NUMBER	-			35.9	36.9	39,4	39.4			
CHARACTERIZATION FACTOR (K-FACTOR)	11.6	12.5	11.9	11.4	11.3	11.4	11.4	11.5	11.6	11.9
CHLORIDES, Organic, ppm	< 1									
CLOUD POINT F	<1	6.78	6.76	< 7E	60	27				
	1a	~-/0	\$ -/0	\$ -/0	-55	-2/	-1			
FLASH POINT (Chevron), "F				149	234	295	355			
FLASH POINT (API), "F			51	147	215	254	284	302	322	334
FREEZE POINT, "F		< -76	< -76	-65	-41					
HYDROGEN SULPHIDE (DISSOLVED), ppm	8									
MERCARTAN SHI DHUR DOT	< 0.005	< 10	< 10	- 10						
MERCAP IAN SULPHUR, ppm	~ ~ 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
METALS										
Arsenic, ppm	< 0.3						< 0.3	< 0.3	< 0.3	< 0.3
iran, ppm	< 0.15						< 0.15	< 0.15	< 0.15	< 0.15
Nickel, ppm	< 0.15						< 0.15	< 0.15	< 0.15	< 0.15
Silicon, ppm	<1									
Vanadium pom	< 0.05						1.7	1.7	< 1.5	< 1.5
	- 0.00						0.1	U. I		0.0
NAPHTHALENES, LV%				0.20	3.25	4,42	4.05	2.75	2.61	3.43
NITROGEN - TOTAL, ppm	426	< 0.3	< 0.3	11	47	163	421	779	1,167	1,476
NITROGEN - BASIC. ppm	109	< 0.3	< 0.3	9	44	92	135	178	258	336
OCTANE NUMBER CLEAR, MON		69.4	45.3							
OCTANE NUMBER CLEAR, RON		70.2	43.5							
PONA ANALYSIS, LV%										
Paraffins		89.1	50.7	19.9						
Olefins		0.0	0.1	0.2						
Naphthenes		10.8	34.4	48.5						
Aromatics		0.1	14.9	31.4						
POUR POINT 'E		< 76	1 76	- 70	50					
		C-/0		< -/0	-58	-30	-9	20	38	50
PNA SUMMARY, WI%										
Saturates					62.8	53.6	46.3	43.9	43.8	43.3
Aromatics					37.1	45.9	52.8	54.8	53.6	51.7
Polane	+				0.1	0.5	0.9	1.3	2.6	5.0
REID VAPOR PRESSURE, Daia	2.8	16.9	0.9	01						
REFRACTIVE INDEX @ 67°C			0.0	0.1	1,461	1,479	1,495	1.502	1.505	1.505
SALT CONTENT, mg/L	< 3									
			30	17						
SULPHUR, wt%	0.19	< 0.01	< 0.01	0.03	0.07	0.15	0.26	0.36	0.47	0.55
(ISCOSITY OST @ ROE (15 5 C)			- 00 +							
/ISCOSITY, cSt @ 104 F (40 C)	4.5	0.4	0.9	1.5	5.1 2.8	63	54.2	48.3		
/ISCOSITY, cSt @ 212 F (100 C)						1.9	3.0	5.3	10.7	27.3
/ISCOSITY, cSt @ 275F (135C)									5.5	9.6

SUNCOR BLEND ASSAY Suncor Blend Name Date Issued

OSA 4/23/2002

This assay is an estimate, developed from blend component samples at source. There may be variations in properties of the blend from time to time.

CUT	Whole Crude	Light Naphtha	Heavy Naphtha	Jet	Light Diesel	Heavy Diesel	Swing	Gas Oil	Heavy Gas Oil	Vacuum Gas Oil
TBP TEMPERATURE AT START OF CUT, F	-44	-44	200	340	470	550	650	700	800	900
TBP TEMPERATURE AT END OF CUT, F	1000	200	340	470	550	650	700	800	900	1000
		1			1					
YIELD OF CUT (LV% OF CRUDE)	100	10.6	12.6	11.5	8.9	16.5	9.6	17.9	10.1	2.2
YIELD OF CUT (wt% OF CRUDE)	100	8.0	11.1	11.2	9.1	17.4	10.3	19.5	11.1	2.5
WAX, wt%	0.20	<u> </u>							0.3	0.5
PNA COMFONENTS, W1%										
SATURATES	T				62.8	53.6	46.3	43.9	43.8	43.3
TOTAL AROMATICS	<u> </u>				37.1	45.9	52.8	54.8	53.6	51.7
Monoaromatics					32.1	32.9	30.8	29.3	28.9	29.9
Diaromatica					4.9	11.1	16.3	14.9	13.1	12.8
Polyaromatics					0.2	1.9	5.7	10.6	11.6	9.1
POLARS					0.1	0.5	0.9	1.3	2.6	5.0
GC COMPONENTS, VOL%	+									
ETHANE	0.0	1			1				1	
PROPANE	0.1									
ISO-BUTANE	0.5	[]								
NORMAL BUTANE	1.8									
ISO-PENTANE	0.9	[]								• •
NORMAL-PENTANE	2.2	1								
CYCLO PENTANE	0.3	i – †								
ISO-HEXANE	0.0	i 1								
NORMAL HEXANE	2.0				· · ·					
BENZENE	0.1									
TBP Distillation			·							
BP	-44	-44	200	340	470	550	650	700	800	900
5% OFF	122	35	208	347	475	556	653	705	803	902
10% OFF	192	51	216	354	479	562	655	710	807	905
30% OFF	421	96	246	381	497	584	665	729	821	917
50% OFF	593	127	274	408	513	604	675	748	838	931
70% OFF	701	157	301	434	529	623	685	768	857	947
10% OFF	816	186	326	458	543	641	695	789	882	976
5% OFF	860	193	333	464	547	646	698	794	891	988
	1 1 000 1	200	340	470	650	650	700	000	000	4 000

TABLE 1

DEER CREEK ENERGY LIMITED JOSLYN CREEK PHASE 2 SAGD PROJECT

SOURCE WATER CHEMISTRY PROVIDED BY MEMS WELLS 3-4, 5-4, 9-5 and 3-5 Sampled and analyzed in September 2003

	UNIT		WE	LLS		
PARAMETERS	<u>as lon</u>	<u>3-4</u>	<u>5-4</u>	<u>9-5</u>	<u>2-5</u>	<u>Average</u>
Calcium	ma/L	45.3	39.7	44.8	46.7	<i>AA</i> 1
Magnesium	ma/L	8.8	7.9	7	74	7.8
Sodium	mg/L	4	5	7	5	5.3
Potasium	mg/L	0.9	1	1.3	1	1.1
Sulphate	mg/L	3.9	3.3	2.5	2.5	3.1
Carbonate	mg/L	<5	<5	<5	<5	<5
Bicarbonate	mg/L	188	169	183	182	180.5
Hydroxide	mg/L	<5	<5	<5	<5	<6
pН	pH unit	8	7.9	7.9	7.9	
TDS calculated	mg/L	156	140	153	152	150.3
Total Hardness as CaCO3	mg/L	149.3	131.6	140.7	147.1	142.2
Dissolved Iron	mg/L	3.44	5.63	10.6	11.3	7.7
Reactive Silica	mg/L	12.4	12.8	12.2	12.5	12.5
Total Organic Carbon	mg/L	6	7	10	18	10.3

NOTE:

Units are in mg/L as ion unless otherwise indicated. Hardness is as CaCO3. pH is in pH units.

DEER CREEK ENERGY LIMITED

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 53 of 70

APPENDIX VIII

AREA DEVELOPMENT PLAN

DEER CREEK ENERGY LIMITED

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 54 of 70

APPENDIX IX

PIPING MATERIALS & VALVE SPECIFICATIONS

SPEC. DESIGNATI	ON	150 PX					
LINE CONTENT	Sweet hy systems	drocarbon liquid & vi	apour, pro	cess air, caustic, pro	cess drain	s, glycol, water, and	vent
DESIGN CODE	1-7	ANSI B-31.3 (latest))	RATING		150 # ANSI	· · · · · · · · · · · · · · · · · · ·
PRESSURE (DESIC	GN)	Refer to Line List		TEMP. (DESIGN)		Refer to Line List	
CORROSION ALLC	WANCE	1.6mm (1/16")		STRESS RELIEVE		No	
X-RAY		10%		TEST PRESSURE		1.5 x Design Pressu	re
SIZE RANGE	(1/2" to 11/2	") 21mm to 48mm	(2" to	8") 60 to 219mm	(10" & o	ver) 273mm & over	NOTES
WALL SCHEDULE		80	<u> </u>	40		40	
	C.S.I	Pipe Smls ASTM	CS	Pine Smls ASTM		20 Dine Smlc ASTM	
PIPE		A-106 GR B	0.0.	A-106 GR B	0.0.1		
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM	A-234 WPB to pipe	
EX. REDUCERS			wall thicl	kness & ANSI B16.9	wall thick	mess & ANSI B16.9	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM A	-234 WPB to pipe	
REDUCERS ONLY			wall thicl	kness & ANSI B16.9	wall thick	ness & ANSI B16.9	
FITTINGS	ASTM /	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM A	A-105 3000# FS to	
SCREWED/S.W.	AOTH	NSI B16.11	<i></i> /	ANSI B16.11	A	NSI B16.11	
COUPLINGS		A-105 6000# FS to	ASTM	A-105 6000# FS to	ASTMA	A-105 6000# FS to	
THREADOLETS/	ASTN	NSI B16.11	A OT11	ANSI B16.11	A	NSI B16.11	
SOCKOLETS		1-103 3000# FS 10	ASIM	A-105 3000# FS to	ASTMA	A-105 3000# FS to	
SUCKULEIS		M A-106 CP B	<i>P</i>	ANSI B16.11	A	NSI B16.11	
SWAGES	7.01	Sch 80 FS					
	AST	M A-106 GR B					
NIPPLES		Sch 80 FS					
	A	STM A-105	A	STM A-105	A	STM A-105	
FLANGES	150# F	RF to ANSI B16.5	150# F	RF to ANSI B16.5	150# F	E to ANSI B16.5	12
GASKETS	3.2mm	Flexitallic 304SS	3.2mm	Flexitallic 304SS	3.2mm	Flexitallic 304SS	
BOLTS	ASTM	A-193 B7 Bolts	ASTM	A-193 B7 Bolts	ASTM	A-193 B7 Bolts	
NUTS	ASTM A	-194 2H Hex Nuts	ASTM A	-194 2H Hex Nuts	ASTM A	-194 2H Hex Nuts	
NOTES: 1. 2 2. 2	21MM to 4 SOCKET \ 273MM AN	8MM FLANGES 150 VELD RF. ID LARGER - STD.	# SCRD. 150# SLIP	OR ? ON	BOWER	DAMBERGER ROL	SETH
	FLANGES	ALLOWED ON BDF	(APPRO)	/AL	E Rev.: 0 F	NGINEERING LTD.	

SPEC. DESIGNATI	ON	150 PSX					
	Sour hyc	Irocarbon liquid & vap	our, proce	ess air, caustic, proce	ess drains,	and vent systems in	
LINE CONTENT	temperat	ture service between	-29°C and	121°C		•	
DESIGN CODE		ANSI B-31.3 (latest)		RATING		150 # ANSI	
PRESSURE (DESIC	SN)	See Table I		TEMP. (DESIGN)		See Table I	
	******					Yes in Gas only;	
CORROSION ALLC	WANCE	3.2mm (1/8")		STRESS RELIEVE		No in Multi-Phase or	Liquid
X-RAY		10%, 100% Gas On	ly	TEST PRESSURE		1.5 x Design Pressu	re
SIZE RANGE	(3/4" to 11/	2") 27mm to 48mm		(2") 60mm	(3" & o	ver) 89mm & over	NOTES
WALL SCHEDULE		160		80		40	3
DIDE	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	
PIPE		A-106 GR B		A-106 GR B		A-106 GR B	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM	A-234 WPB to pipe	
EX. REDUCERS			wall thicl	kness & ANSI B16.9	wall thicl	ness & ANSI B16.9	
FITTINGS - B.W.	}		ASTM /	A-234 WPB to pipe	ASTM	A-234 WPB to pipe	
REDUCERS ONLY			wall thick	ness & ANSI B16.9	wall thick	ness & ANSI B16.9	
FITTINGS	ASIM	A-105 3000# FS to		A-105 3000# FS to	ASIM	A-105 3000# FS to	4
SCREWED/S.W.	ACTNA	4105 6000# ES to	ACTN	ANSI 816.11	ACTN	ANSI 816.11	1
COUPLINGS		ANSI 816 11		NGI 816 11		NCI R16 11	1
THREADOLETS/	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM /	A-105 3000# ES to	1
SOCKOLETS		ANSI B16 11		NSI B16 11		NSI B16 11	1
	AS	ГМ A-106 GR B					
SWAGES		Sch 160 FS					1
	AST	ГМ A-106 GR B	· · · · ·				
NIPPLES		Sch 160 FS					1
	F	ASTM A-105	A	STM A-105	A	STM A-105	
	150#	RF to ANSI B16.5	150# F	RF to ANSI B16.5	150# F	RF to ANSI B16.5	1,2
GASKETS	3.2mm	n Flexitallic 316SS	3.2mm	Flexitallic 316SS	3.2mm	Flexitallic 316SS	
BOLTS	ASTM	A-193 B7M Bolts	ASTM	A-193 B7M Bolts	ASTM	A-193 B7M Bolts	
NILITS		104 2HM Hox Nute		104 2HM Hox Nuto	ACTMA	104 2HM Hox Nuto	
NU13	ASTWA	-194 ZHIVI HEX INUIS	ASTIVIA		ASTIVIA		
							<u> </u>
NOTES: 1							
	SECOND	ARY I INES AFTER I					
2	273MM 4	ND LARGER - STD	150# SUF	ON	BOWER		SETH
2.	FLANGE	S ALLOWED ON BDF		VAI	F		
3	ALL 21M	VI THREADED PIPIN	G TO BE	xxs	L		
					Rev.: 1	March 2005	
here and the second							

SPEC. DESIGNATION	ON 150 SPSX				<u></u>
LINE CONTENT	Stainless steel piping containidrains, and vent systems in te	ing sour hy	/drocarbon liquid & va	apour, process air, caustic, pro ୬°C and 121°C	cess
DESIGN CODE	ANSI B-31.3 (latest))	RATING	150 # ANSI	
PRESSURE (DESIG	N) See Table I		TEMP. (DESIGN)	See Table I	
CORROSION ALLC	WANCE NI		STRESS RELIEVE	No	
X-RAY	Partial (min.)		TEST PRESSURE	1.5 x Design Pressu	Ire
SIZE RANGE	(1/2" to 11/2") 21mm to 48mm	(2" to	8") 60 to 219mm	(10" & over) 273mm & over	NOTES
WALL SCHEDULE	80	<u> </u>	105	Calculate	
	S S Pipe Smls ASTM	SS	Pine Smls ASTM		<u> </u>
PIPE	A-312-TP316	Δ	-312-TP316	Δ_312_TP316	
FITTINGS - B.W.		AST	A-403-WP316L	ASTM A-403-WP316	
EX. REDUCERS		to pir	be wall thickness	to pipe wall thickness	
FITTINGS - B.W.		ASTN	A-403-WP316L	ASTM A-403-WP316L	
REDUCERS ONLY		to pir	be wall thickness	to pipe wall thickness	
FITTINGS	ASTM A-182-F316L	ASTM A-182-F316L ASTM A-		ASTM A-182-F316L	
SCREWED	3000# FS		3000# FS	3000# FS	
	ASTM A-182-F316L	AST	M A-182-F316L	ASTM A-182-F316	
COUPLINGS	3000# FS		3000# FS	3000# FS	
	ASTM A-182-F316L	AST	M A-182-F316L	ASTM A-182-F316L	
INREADULEIS	3000# FS		3000# FS	3000# FS	
SWAGES	ASTM A-312-TP316L				
SWAGES	Sch 80 FS				
	ASTM A-312-TP316L				
	Sch 80 FS				
	ASTM A-182-F316L	ASŤ	M A-182-F316L	ASTM A-182-F316L	
	150# RF		150# RF	150# RF	1,2
GASKETS	3.2mm Flexitallic 316SS	3.2mm	Flexitallic 316SS	3.2mm Flexitallic 316SS	
BOLTS	ASTM A-193 B8M Bolts	ASTM	A-193 B8M Bolts	ASTM A-193 B8M Bolts	
NUTS	ASTM A-194 8M Hex Nuts	ASTM A	-194 8M Hex Nuts	ASTM A-194 8M Hex Nuts	
NUTES: 1.	2 INVINITION 48MM FLANGES 15(ля SCRD.	OK		
^		4504 01			
2. 1	273MM AND LARGER - STD. FLANGES ALLOWED ON BDF). 150# SLIP ON BOWER DAMBERGER RC DR APPROVAL. ENGINEERING LTD			SETH
			Rev.: 0 February 2005		

SPEC. DESIGNATION	DN 150 S	SIAX					
LINE CONTENT	Stainless steel	piping containi	ng dry ins	trument air in temper	ature servi	ice between -29°C ar	nd 121ºC
DESIGN CODE	ANSI	B-31.3 (latest)	ł	RATING		150 # ANSI	
PRESSURE (DESIG	iN) Refer	to Line List		TEMP. (DESIGN)		Refer to Line List	
CORROSION ALLO	WANCE Nil			STRESS RELIEVE	No		
X-RAY	Partia	l (min.)		TEST PRESSURE		1.5 x Design Pressu	re
SIZE RANGE	(1/2" to 1'/2") 21n	nm to 48mm	(2" to	8") 60 to 219mm	(10" & o	ver) 273mm & over	NOTES
WALL SCHEDULE	8	<u>רו וויי</u>	<u> </u>	105			
TREE OUTEDOLL	S.S. Pine S			Pine Smls ASTM	001		
PIPE	Δ_312_Τ	D3041		-312-TD3041	0.0.1	212 TD20/1	
FITTINGS - B.W.	7(0121	1 0046	ASTA	A-403-WP3041	ASTN	A-403-WP3041	<u> </u>
EX REDUCERS			to nir	ne wall thickness	to nir	e wall thickness	
FITTINGS - B.W.			AST	A-403-WP304I	ASTN	A-403-WP304I	
REDUCERS ONLY			to pir	ne wall thickness	to nir	e wall thickness	
FITTINGS	ASTM A-1	82-F304L	AST	M A-182-F304I	AST	M A-182-F304I	
SCREWED	3000	# FS		3000# FS		3000# FS	
	ASTM A-1	82-F304L	AST	M A-182-F304L	AST	M A-182-F304L	
COUPLINGS	3000	# FS		3000# FS		3000# FS	
	ASTM A-1	82-F304L	AST	M A-182-F304L	AST	M A-182-F304L	
INREADULEIS	3000	# FS		3000# FS		3000# FS	
SWACES	ASTM A-31	2-TP304L					
SWAGES	Sch 8	0 FS					
	ASTM A-31	2-TP304L					
NIPPLES	Sch 8	0 FS					
			AST	M A-182-F304L	AST	M A-182-F304L	
FLANGES				150# RF		150# RF	1,2
GASKETS			3.2mm	n Flexitallic 304SS	3.2mm	Flexitallic 304SS	
BOLTS			ASTN	A A-193 B8 Bolts	ASTM	A-193 B8 Bolts	
NUTS			ASTM	A-194 8 Hex Nuts	ASTM	A-194 8 Hex Nuts	
	· ··· · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·						
NOTES: 1.	21MM to 48MM SOCKET WELD	FLANGES 150 RF.	0# SCRD.	OR			
2.	273MM AND LA	RGER - STD.	150# SLIF	PON	BOWER	R DAMBERGER ROI	SETH
	FLANGES ALLO	OWED ON BDI	R APPRO	VAL.	E	ENGINEERING LTD.	
					Rev.: 0	February 2005	

SPEC. DESIGNATIO	DN	150 CPX					
LINE CONTENT	Internally	coated piping contain drains, and vent system	ning swee	t hydrocarbon liquid &	& vapour, veen -29°	water, process air, ca C and 121ºC	austic,
DESIGN CODE	1000000	ANSI B-31 3 (latest)		RATING	10011 20	150 # ANSI	
PRESSURE (DESIG	N)	See Table I		TEMP. (DESIGN)		See Table I	
TREGOURE (BEGIG	<u> </u>	Nil [Welded	1				
	WANCE	1 6mm (1/16") [Sc	rewedl	STRESS RELIEVE		No	
Y-RAY		100%	ronodj	TEST PRESSURE		1.5 x Design Pressu	re
SIZE DANCE	1/1/11 40 11	(1) 21mm to 49mm	(2" to	8") 60 to 210mm	(10" & c	ver) 273mm & over	NOTES
SIZE RANGE	1/2 10 17	2 / 2 111111 10 4011111		o j oo to 2 romin	40./	ntornally coated)	
WALL SCHEDULE	<u> </u>	OU Ding Smlc ASTM		Dine Smls ASTM		Pine Smls ASTM	
PIPE	0.5		0.0.		0.0.	A-106 GR B	
			ASTM	A-234 WPB to pipe	ASTM	A-234 WPB to pipe	
EX REDUCERS			wall thic	kness & ANSI B16.9	wall thic	kness & ANSI B16.9	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM	A-234 WPB to pipe	
REDUCERS ONLY			wall thic	kness & ANSI B16.9	wall thic	kness & ANSI B16.9	
FITTINGS	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	
SCREWED/S.W.		ANSI B16.11		ANSI B16.11	/	ANSI B16.11	
COUPLINGS	ASTM	A-105 6000# FS to	ASTM	A-105 6000# FS to	ASTM	A-105 6000# FS to	
	/	ANSI B16.11	/	ANSI B16.11	/	ANSI B16.11	
THREADOLETS/	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASIM	A-105 3000# FS to	
SOCKOLETS		ANSI B16.11	//	ANSI B16.11	/	ANSI BTO.TT	
SWAGES	AS	Sch 80 FS					
	AS	TM A-106 GR B					
		Sch 80 FS					
FLANGES			/ 150#	RF to ANSI B16.5	, 150#	RF to ANSI B16.5	1,2
GASKETS			3.2mn	n Flexitallic 304SS	3.2mm	n Flexitallic 304SS	
BOLTS			AST	A-193 B7 Bolts	AST	A-193 B7 Bolts	
NUTS			ASTM	A-194 2H Hex Nuts	ASTM	A-194 2H Hex Nuts	
					· · · · · · · · · · · · · · · · · · ·		
	211434.4-	ADNANA EL ANICES 45		OP			<u> </u>
NOTES: 1.	SOCKET	WELD RF.	U# 30KD	. Urt			
2.	273MM A	AND LARGER - STD. S ALLOWED ON BD	150# SLI R APPRC	P ON VAL.	BOWE	R DAMBERGER RO ENGINEERING LTD	LSETH
					Rev.: 0	February 2005	

SPEC. DESIGNATION	ON	150 CPSX					
LINE CONTENT	Internally	coated piping contai	ning sour	hydrocarbon liquid &	vapour, pr	ocess air, caustic, pro	ocess
	drains, ar	nd vent systems in te	mperature	service between -29	°C and 12	1°C	
DESIGN CODE		ANSI B-31.3 (latest)		RATING		150 # ANSI	
PRESSURE (DESIG	iN)	See Table I		TEMP. (DESIGN)		See Table I	
		Nil [Welded]			Yes in Gas only;	
CORROSION ALLO	WANCE	3.2mm (1/8") [Sc	rewed]	STRESS RELIEVE		No in Multi-Phase or	Liquid
X-RAY		Full (100%)		TEST PRESSURE		1.5 x Design Pressu	re
SIZE RANGE	(¾" to 1½	2") 27mm to 48mm	(2" to	8") 60 to 219mm	(10" & o	ver) 273mm & over	NOTES
WALL SCHEDULE		160	40 (ii	nternally coated)	40 (ii	nternally coated)	3
DIDE	C.S.	Pipe Smls ASTM	C.S. I	Pipe Smls ASTM	C.S. I	Pipe Smls ASTM	
	·	A-106 GR B	/	A-106 GR B	/	A-106 GR B	
FITTINGS - B.W.			ASTM /	A-234 WPB to pipe	ASIMA	A-234 WPB to pipe	
EX. REDUCERS			wall thick	(ness & ANSI B16.9	wall thick	(ness & ANSI B16.9	
FITTINGS - B.W.			ASTIN /		ASTIVI A		
REDUCERS ONLY	ACTM	A 105 2000# ES to		(ness & ANSI B 10.9		105 3000# FS to	
				NSI B16 11		NSI B16 11	1
SUREVVED/S.VV.	ASTM	A-105 6000# FS to	ASTM	A-105 6000# FS to	ASTM	A-105 6000# FS to	
COUPLINGS	, io i wi /	NSI B16.11		NSI B16.11		NSI B16.11	1
THREADOLETS/	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM /	A-105 3000# FS to	
SOCKOLETS	ļ	NSI B16.11	A	NSI B16.11	A	NSI B16.11	1
SWAGES	AST	M A-106 GR B					4
		Sch 160 FS					
NIPPLES		Sch 160 FS					1
FLANGES			A 5 0 # 1	ASTM A-105	450# I	STM A-105	1 2
			190#1	RF 10 ANSI B 10.5	150#1	KF 10 ANSI D 10.5	1,4
GASKETS			3.2mm	Flexitallic 316SS	3.2mm	Flexitallic 316SS	
BOLTS			ASTM	A-193 B7M Bolts	ASTM	A-193 B7M Bolts	
NUTS			ASTM A	-194 2HM Hex Nuts	ASTM A	-194 2HM Hex Nuts	
		m					
						· · · · · · · · · · · · · · · · · · ·	
NOTES: 1.	SCREWE	D CONNECTIONS	TO BE US	ED ONLY ON			
	SECOND	ARY LINES AFTER	FLANGED	BLOCK VALVES.			
2.	273MM A	ND LARGER - STD.	150# SLIF	PON	BOWE	R DAMBERGER ROL	SETH
	FLANGE	S ALLOWED ON BD	R APPRO	VAL.		ENGINEERING LTD.	
3.	ALL 21M	M THREADED PIPIN	IG TO BE	XXS.			
					_		
					Rev.: 1	March 2005	

SPEC. DESIGNATI	ON	150 PY					
LINE CONTENT	Sweet hy	drocarbon liquid & vi	apour, pro	cess air, caustic, prod	cess drain	s, glycol, water, and	vent
DESIGN CODE	10)0101110	ANSI B-31 3 (latest)		PATING		150 # ANSI	
PRESSURE (DESIG	SN)	Refer to Line List	· · · · · · · · · · · · · · · · · · ·	TEMP (DESIGN)		Bofor to Line List	
CORROSION ALLO	WANCE	1 6mm (1/16")		STRESS DELIEVE		No	
X-RAY	MANUL	10%		TEST DDESSIDE		1.5 x Docian Brossu	<u> </u>
SIZE RANGE	1/1/" to 11/	") 21 mm to 19 mm	()" to	9") 60 to 040mm	(401.0 -	1.5 X Design Flessu	
WALL SCUEDUIE	$\frac{1}{1}$	2) 2 mm to 46mm		6) 60 to 219mm	(10 & 0	ver) 273mm & over	NOTES
WALL SUREDULE		OU Dino Smla ASTM		40 Dine Conte ACTM	0.0	40	
PIPE	0.0.		0.5.		U.S.	Pipe Smis ASTM	
FITTINGS - B.W.	<u> </u>		ASTM	A-100 GR D A-234 W/PB to nine	ASTM	4-100 GR B	
EX. REDUCERS			wall thic	knoss & ANSI B16 0	Wall thick	mose & ANSI B16 0	
FITTINGS - B.W.			ASTM	A-234 WPB to nine	ASTM	A-234 WPR to nine	
REDUCERS ONLY			wall thic	kness & ANSI B16 9	wall thick	mess & ANSI B16 9	
FITTINGS	ASTM /	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	
SCREWED/S.W.	A	NSI B16.11		NSI B16.11	A	NSI B16.11	
	ASTM /	A-105 6000# FS to	05 6000# FS to ASTM A-105 6000# FS			A-105 6000# FS to	
	Α	NSI B16.11	ļ	ANSI B16.11	A	NSI B16.11	
THREADOLETS/	ASTM A	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM /	A-105 3000# FS to	
SOCKOLETS	A	NSI B16.11	<i>F</i>	ANSI B16.11	A	NSI B16.11	
SWAGES	AST	M A-106 GR B					
NIPPLES	A31	Soh PA ES					
	Δ	STM 4-105		STMA 105			
FLANGES	150# F	PE to ANSI B16.5	150#1		بر ۱۶۵۴ ۳		10
	100#1		130#1	1 IU ANSI D 10.5	100# F	(F 10 ANSI B 10.5	1,2
GASKETS		Grafoil		Grafoil		Grafoil	
BOLTS	ASTM	A-193 B7 Bolts	ASTN	1 A-193 B7 Bolts	ASTM A-193 B7 Bolts		
NUTS	ASTM A	-194 2H Hex Nuts	ASTM A	A-194 2H Hex Nuts	ASTM A	-194 2H Hex Nuts	
NOTES: 1. 21MM to 48MM FLANGES 150 SOCKET WELD RF. 2. 273MM AND LARGER - STD. FLANGES ALLOWED ON BDF			9# SCRD. 150# SLIF & APPRO\	OR ON /AL.	BOWER E Rev.: 0 F	R DAMBERGER ROL NGINEERING LTD. February 2005	SETH

SPEC. DESIGNATION	ON	150 PSY					
	Sour hyd	rocarbon liquid & vap	our, proce	ess air, caustic, proce	ss drains,	and vent systems in	
LINE CONTENT	temperat	ure service between	121°C and	200°C			
DESIGN CODE		ANSI B-31.3 (latest)		RATING		150 # ANSI	
PRESSURE (DESIG	SN)	See Table I		TEMP. (DESIGN)		See Table I	
						Yes in Gas only;	
CORROSION ALLC	WANCE	3.2mm (1/8")		STRESS RELIEVE	STRESS RELIEVE No in Multi-Phase		Liquid
X-RAY		10%, 100% Gas Onl	у	TEST PRESSURE		1.5 x Design Pressu	re
SIZE RANGE	(3/4" to 11/	2") 27mm to 48mm		(2") 60mm	(3" & o	ver) 89mm & over	NOTES
WALL SCHEDULE		160		80		40	3
	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	
PIPE		A-106 GR B		A-106 GR B		A-106 GR B	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM /	A-234 WPB to pipe	
EX. REDUCERS			wall thic	kness & ANSI B16.9	wall thicl	kness & ANSI B16.9	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM	A-234 WPB to pipe	
REDUCERS ONLY			wall thic	kness & ANSI B16.9	wall thick	kness & ANSI B16.9	
FITTINGS	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	
SCREWED/S.W.	l A	ANSI B16.11	/	ANSI B16.11	<i>F</i>	ANSI B16.11	1
	ASTM	A-105 6000# FS to	ASTM	A-105 6000# FS to	ASTM	A-105 6000# FS to	
COUPLINGS	l A	ANSI B16.11	/	ANSI B16.11	<i>F</i>	NSI B16.11	1
THREADOLETS/	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	
SOCKOLETS	ļ	ANSI B16.11	/	ANSI B16.11	<i>I</i>	ANSI B16.11	1
SWAGES	AS1	FM A-106 GR B					
		Sch 160 FS					1
NIPPLES	AS	M A-106 GR B					4
		Sch 160 FS				STM & 105	
FLANGES	4504		4504	ASTIVIA-100	150#1	DE to ANSI B16 5	12
	150#1	RF TO ANSI B16.5	150#	RF LO ANSI B 10.5	100#1	RF 10 ANOI D 10.5	····
GASKETS		Grafoil		Grafoil		Grafoil	
					A O T 1	A 400 D7M Dalla	
BOLTS	ASTM	A-193 B7M Bolts	ASIM	A-193 B/M Bolts	ASTM	A-193 B/M Bolts	
NUTS	ASTM A	-194 2HM Hex Nuts	ASTM A	-194 2HM Hex Nuts	ASTM A	-194 2HM Hex Nuts	
NOTES: 1	SCREWE	D CONNECTIONS 1	LO BE US	FD ONLY ON			
	SECONE	ARY LINES AFTER	FLANGE	BLOCK VALVES.			
2	273MM A	ND LARGER - STD	300# SLI	PON	BOWE	R DAMBERGER RO	LSETH
Z .	FLANGE	S ALLOWED ON BD	RAPPRO	VAL.		ENGINEERING LTD.	
2	ALL 21M	M THREADED PIPIN	IG TO BE	XXS			
	, <i>2</i> (1V)						
					Rev.: 1	March 2005	
L						· · · · · · · · · · · · · · · · · · ·	

SPEC. DESIGNATI	ON 300 PX				
LINE CONTENT	Sweet hydrocarbon liquid & v	apour, pro	cess air, caustic, proc	cess drains, water, glycol, and	vent
	systems in temperature service	ce betweei	n -29°C and 121°C		
DESIGN CODE	ANSI B-31.3 (latest)	RATING	300 # ANSI	
PRESSURE (DESIC	SN) Refer to Line List		TEMP. (DESIGN)	Refer to Line List	
CORROSION ALLC	DWANCE 1.6mm (1/16")		STRESS RELIEVE	No	
X-RAY	10%		TEST PRESSURE	1.5 x Design Pressu	re
SIZE RANGE	(1/2" to 11/2") 21mm to 48mm	(2" to	8") 60 to 219mm	(10" & over) 273mm & over	NOTES
WALL SCHEDULE	160		40	Calculate	3
PIPE	C.S. Pipe Smls ASTM	C.S.	Pipe Smls ASTM	C.S. Pipe Smls ASTM	<u> </u>
FITTINGS - B W	A-100 GK B	ASTM	A-100 GR B	A-106 GR B	
EX REDUCERS				ASTIMA-234 WPB to pipe	
FITTINGS - B.W.			Δ_{-234} W/PB to pipo	Wall thickness & ANSI B16.9	
REDUCERS ONLY		woll thick		ASTIVIA-234 WPB to pipe	
FITTINGS	ASTM A-105 3000# ES to		A-105 3000# ES to		
SCREWED/S W	ANSI B16 11		NSI B16 11	ASTM A-105 3000# FS to	
CONCEPTED/O.M.	ASTM A-105 6000# FS to	ASTM	A-105 6000# ES to	ANSI B16.11	
COUPLINGS	ANSI B16 11		NSI B16 11	ASTIVI A-105 0000# FS to	
THREADOLETS/	ASTM A-105 3000# FS to	ASTM	A-105 3000# FS to	ANSI B 10.11	·····
SOCKOLETS	ANSI B16 11		NSI B16 11	ANISI P16 11	
0114.050	ASTM A-106 GR B			ANSI B10.11	
SWAGES	Sch 160 FS				
	ASTM A-106 GR B				
NIFFLES	Sch 160 FS				
	ASTM A-105 300# RF to	ASTM	A-105 300# RF to	ASTM A-105 300# RF to	
I LANGES	ANSI B16.5		ANSI B16.5	ANSI B16.5	1.2
GASKETS	3.2mm Flexitallic 304SS	3.2mm	Flexitallic 304SS	3.2mm Flexitallic 304SS	·····
BOLTS	ASTM A-193 B7 Bolts	ASTN	A-193 B7 Bolts	ASTM A-193 B7 Bolts	
NUTS	ASTM A-194 2H Hex Nuts	ASTM A	-194 2H Hex Nuts	ASTM A-194 2H Hex Nuts	
NUTES: 1. 2. 2 3. 7	21MM TO 48MM FLANGES 30 SOCKET WELD RF. 273MM AND LARGER - STD. 3 FLANGES ALLOWED ON BDF ALL 48MM THREADED PIPING	00# SCRD. OR 300# SLIP ON R APPROVAL. G TO BE SCH 80 (XS). Rev : 0. Eebruary 2005			SETH

SPEC. DESIGNATI	ON	300 PSX					
LINE CONTENT	Sour hyd temperat	rocarbon liquid & vap ure service between	oour, proce -29ºC and	ess air, caustic, proce l 121ºC	ess drains	, and vent systems in	
DESIGN CODE	• · · · · · · · · · · · · · · · · · · ·	ANSI B-31.3 (latest)		RATING		300 # ANSI	
PRESSURE (DESIG	GN)	See Table I		TEMP. (DESIGN)		See Table I	
CORROSION ALLO	WANCE	3.2mm (1/8")		STRESS RELIEVE	Yes		
X-RAY		Full (100%)		TEST PRESSURE		1.5 x Design Pressu	re
SIZE RANGE	(1/2" to	1") 21mm to 33mm		(2") 60mm	(21/2" &	over) 73mm & over	NOTES
WALL SCHEDULE		XXS	<u>† – – – – – – – – – – – – – – – – – – –</u>	80	1 (-/	Calculate	3
	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	CS	Pine Smls ASTM	<u> </u>
PIPE		A-106 GR B		A-106 GR B			
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM	A-234 WPB to pipe	
EX. REDUCERS			wall thicl	kness & ANSI B16.9	wall thick	kness & ANSI B16.9	
FITTINGS - B.W.		A		A-234 WPB to pipe	ASTM /	A-234 WPB to pipe	
REDUCERS ONLY		W		kness & ANSI B16.9	wall thick	kness & ANSI B16.9	
FITTINGS	ASTM	ASTM A-105 3000# FS to A		A-105 3000# FS to	ASTM	A-105 3000# FS to	
SCREWED/S.W.	AOTU	ANSI B16.11	4	NSI B16.11	A	ANSI B16.11	1
COUPLINGS	ASIM	A-105 6000# FS to	ASIM	A-105 6000# FS to	ASTM	A-105 6000# FS to	
	ACTM	ANSI 816.11	A O TH	NSI B16.11	A	ANSI B16.11	1
SOCKOLETS		A-103 3000# FS 10	ASIM	A-105 3000# FS to	ASIM	A-105 3000# FS to	
SUCKULEIS		MA-106 GR B	FF	NSI B16.11	A	ANSI B16.11	1
SWAGES		Sch XXS ES					1
	AST	M A-106 GR B		·····			
NIPPLES	5	Sch XXS FS					1
	ASTM A-105 300# RF to		ASTM	A-105 300# RF to	ASTM	A-105 300# RF to	
FLANGES		ANSI B16.5		ANSI B16.5		ANSI B16.5	1.2
GASKETS	3.2mm	Flexitallic 316SS	3.2mm	Flexitallic 316SS	3.2mm Flexitallic 316SS		
BOLTS	ASTM	A-193 B7M Bolts	ASTM	A-193 B7M Boits	ASTM	A-193 B7M Bolts	
NUTS	ASTM A-	194 2HM Hex Nuts	ASTM A-	194 2HM Hex Nuts	ASTM A-194 2HM Hex Nuts		
NOTES: 1. 2. 3.	SCREWE SECOND/ 273MM AI FLANGES ALL 48MN	D CONNECTIONS T ARY LINES AFTER F ND LARGER - STD. 3 ALLOWED ON BDF 4 THREADED PIPING	O BE USE FLANGED 300# SLIF & APPRO\ G TO BE \$	ED ONLY ON BLOCK VALVES. ON /AL. SCH 160.	BOWEF E	R DAMBERGER ROL ENGINEERING LTD. February 2005	SETH
							I I

SPEC. DESIGNATI	ON	300 PSY					
	Sour hyd	rocarbon liquid & va	pour, proce	ess air, caustic, proce	ess drains	and vent systems in	······································
	temperat	ure service between	121°C and	1 200°C			
DESIGN CODE		ANSI B-31.3 (latest))	RATING		300 # ANSI	
PRESSURE (DESIC	GN)	See Table I		TEMP. (DESIGN)		See Table I	
CORROSION ALLC	OWANCE	3.2mm (1/8")		STRESS RELIEVE		Yes	
X-RAY		Full (100%)		TEST PRESSURE		1.5 x Design Pressu	re
SIZE RANGE	(1/2" to	1") 21mm to 33mm	1	(2") 60mm	(3" & o	ver) 89mm & over	NOTES
WALL SCHEDULE		XXS		80		Calculate	3
DIDE	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	C.S. 1	Pipe Smls ASTM	
		A-106 GR B		A-106 GR B		A-106 GR B	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM A	A-234 WPB to pipe	
EX. REDUCERS	ļ		wall thicl	kness & ANSI B16.9	wall thick	ness & ANSI B16.9	
FITTINGS - B.W.			ASTM /	A-234 WPB to pipe	ASTM A	A-234 WPB to pipe	
REDUCERS ONLY	ACTN	A 405 0000 FO /	wall thick	ness & ANSI B16.9	wall thick	ness & ANSI B16.9	
CDEMEDIC W	ASIM	A-105 3000# FS to		A-105 3000# FS to	ASTM A	A-105 3000# FS to	
SCREWED/S.W.	ASTM	A-105 6000# ES to		NSI B16.11		NSI B16.11	1
COUPLINGS		NSI B16 11		4-103 0000# FS 10	ASIMA	A-105 6000# FS to	4
THREADOLETS/	ASTM	A-105 3000# FS to	ASTM	A-105 3000# ES to		105 3000# ES to	<u>/</u>
SOCKOLETS	A	NSI B16.11	Δ A	NSI B16 11		NSI B16 11	1
SWACES	AST	M A-106 GR B	,		^		
SWAGES	5	Sch XXS FS					1
	AST	M A-106 GR B					
	5	Sch XXS FS					1
FLANGES	A	STM A-105	A	STM A-105	A	STM A-105	
	300#	RF to ANSI B16.5	<u> </u>	RF to ANSI B16.5	300# F	RF to ANSI B16.5	1,2
GASKETS		Grafoil		Grafoil		Grafoil	
					·		
BOLTS	ASTM	A-193 B7M Bolts	ASTM	A-193 B7M Bolts	ASTM	A-193 B7M Bolts	
NUTS	ASTM A-	194 2HM Hex Nuts	ASTM A-	194 2HM Hex Nuts	ASTM A-	194 2HM Hex Nuts	
NOTES: 1.	SCREWE	D CONNECTIONS T	O BE USE	D ONLY ON			
	SECOND/	ARY LINES AFTER F	LANGED	BLOCK VALVES.			
2	273MM AI	ND LARGER - STD.	300# SLIP	ON [BOWER	DAMBERGER ROL	SETH
	FLANGES	ALLOWED ON BDF	RAPPROV	'AL.	E	NGINEERING LTD.	
3	ALL 48MM	I THREADED PIPIN	G TO BE S	CH 160.			
					_		
					Rev.: 0 F	ebruary 2005	

SPEC. DESIGNATION	ON	300 CPSX				······································	
LINE CONTENT	Internally drains, ar	coated piping containd vent systems in te	ning sour	hydrocarbon liquid & service between -29	vapour, p P°C and 12	rocess air, caustic, pi 21ºC	rocess
DESIGN CODE		ANSI B-31.3 (latest)		RATING		300 # ANSI	
PRESSURE (DESIG	iN)	See Table I		TEMP. (DESIGN)		See Table I	
		Nil [Welded	I]				
CORROSION ALLO	WANCE	3.2mm (1/8") [Sc	rewed]	STRESS RELIEVE	Yes		
X-RAY		Full (100%)		TEST PRESSURE		1.5 x Design Pressu	re
SIZE RANGE	(1⁄2" to '	1") 21mm to 33mm	(2" to	8") 60 to 219mm	(10" & o	ver) 273mm & over	NOTES
WALL SCHEDULE		XXS	40 (ii	nternally coated)	40 (ir	nternally coated)	3
PIPF	Ç.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	C.S. 1	Pipe Smls ASTM	
	/	A-106 GR B		A-106 GR B		A-106 GR B	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM /	A-234 WPB to pipe	
EX. REDUCERS			wall thick	ness & ANSI B16.9	wall thick	ness & ANSI B16.9	
FITTINGS - B.W.			ASIM	A-234 WPB to pipe	ASTMA	A-234 WPB to pipe	
FITTINGS	ASTM	A-105 3000# ES to		(ness & ANSI B16.9	wall thick	ness & ANSI B16.9	
SCREWED		NSI 816 11		4-103 3000# FS 10	ASIMA	A-105 3000# FS to	4
CONCILLO	ASTM	A-105 6000# FS to	ASTM	A-105 6000# FS to		105 6000# ES to	
COUPLINGS	A	NSI B16.11	A	NSI B16.11		NSI B16 11	1
THREADOLETS	ASTM /	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM A	A-105 3000# FS to	· · · · ·
	A	NSI B16.11	A	NSI B16.11	Α	NSI B16.11	1
SWAGES	A31	Sch XXS FS					1
	AST	M A-106 GR B					'
NIPPLES	5	Sch XXS FS					1
FLANGES			ASTM	A-105 300# RF to	ASTM	A-105 300# RF to	
			/	ANSI B16.5	<i>F</i>	NSI B16.5	1,2
GASKETS			3.2mm	Flexitallic 316SS	3.2mm	Flexitallic 316SS	
BOLTS			ASTM	A-193 B7M Bolts	ASTM	A-193 B7M Bolts	
NUTS			ASTM A-	194 2HM Hex Nuts	ASTM A-	194 2HM Hex Nuts	
					······································		
			<u>.</u>				
	SCDEWE						
о ·	2731/11/ 11		200# 200	ON VALVES.			0ETU
۷. ۲					BUWER		.55111
3. /	ALL 48MM		G TO BE S	SCH 160.			
5. ,							
					Rev.: 0 F	ebruary 2005	

SPEC. DESIGNATION	ON	600 PX					
LINE CONTENT	Sweet hy temperat	drocarbon liquid & va	apour, pro -29ºC and	cess air, caustic, proc 121ºC	ess drains	s, water, and vent sys	tems in
DESIGN CODE		ANSI B-31.3 (latest)		RATING		600 # ANSI	
PRESSURE (DESIG	SN)	Refer to Line List		TEMP. (DESIGN)		Refer to Line List	
CORROSION ALLC	WANCE	1.6mm (1/16")		STRESS RELIEVE		No	
X-RAY		10%		TEST PRESSURE	1.5 x Design Press		re
	l line in the second				(2	2". 4" & over)	
SIZE RANGE	(½" to 1	1⁄2") 21mm to 48mm	(21⁄2",	3") 73mm, 89mm	60mn	n, 114mm & over	NOTES
WALL SCHEDULE		160		40		Calculate	
PIPE	C.S.	Pipe Smls ASTM A-106 GR B	C.S.	Pipe Smls ASTM A-106 GR B	C.S. I	Pipe Smls ASTM A-106 GR B	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM /	A-234 WPB to pipe	
EX. REDUCERS			wall thic	kness & ANSI B16.9	wall thick	ness & ANSI B16.9	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM /	A-234 WPB to pipe	
REDUCERS ONLY			wall thic	kness & ANSI B16.9	wall thick	ness & ANSI B16.9	
FITTINGS	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM /	A-105 3000# FS to	
SCREWED	<i>[</i>	ANSI B16.11	ļ	NSI B16.11	A	NSI B16.11	
COUPLINGS	ASTM	A-105 6000# FS to	ASTM	A-105 6000# FS to	ASTM /	A-105 6000# FS to	
	ASTM	A-105 3000# FS to	ASTM	A-105 3000# ES to	ASTM	A-105 3000# ES to	······
THREADOLETS	/-	NSI B16.11	4	NSI B16.11	A	NSI B16.11	
SWAGES	AST	M A-106 GR B					
	AST	M A-106 GR B					
NIPPLES		Sch 160 FS					
FLANGES	ASTM	A-105 600# RF to ANSI B16.5	ASTM	A-105 600# RF to ANSI B16.5	ASTM /	A-105 600# RF to ANSI B16.5	1
GASKETS	3.2mm	Flexitallic 304SS	3.2mm	Flexitallic 304SS	3.2mm	Flexitallic 304SS	
BOLTS	ASTN	/ A-193 B7 Bolts	ASTN	A-193 B7 Bolts	ASTN	I A-193 B7 Bolts	
NUTS	ASTM A	A-194 2H Hex Nuts	ASTM A	A-194 2H Hex Nuts	ASTM A	-194 2H Hex Nuts	
NOTES: 1.	21MM TO SOCKET	48MM FLANGES 60 WELD RF.	0# SCRD	. OR	· · · · · · · · · · · · · · · · · · ·	I	
					BOWEF E	R DAMBERGER ROL ENGINEERING LTD.	SETH
					Rev.: 0	February 2005	

SPEC. DESIGNATI	ON	600 PSX					
LINE CONTENT	Sour hyd	Irocarbon liquid & var	pour, proce	ess air, caustic, proce	ess drains,	and vent systems in	
DESIGN CODE	Itemperat	ANSI P 21 2 (lotoot)	-29 C anu	DATINO	. <u> </u>		
PRESSURE (DESIC		See Table I		TEMP (DESIGN)		600 # ANSI	
CORROSION ALLO	WANCE	3 2mm (1/9")		STORES DELIEVE			
X-RAY	MANGL.	5.21111 (1/6)		TEST DDESCUDE		Yes	
SIZE RANGE	1 (1/2" to 1	1/") 21mm to 19mm	T	1EST PRESSURE	1 /0/// 0	1.5 x Design Pressu	re
WALL SCHEDULE		<u>72) 2 min to 40mm</u>	<u> </u>		(2/2" &	over) /3mm & over	NOTES
WALL SCHEDULE		AAO Pino Smlc ASTM	6	160 Dina Seria ASTM		Calculate	
PIPE	0.0.		0.0.		C.S. I	Pipe Smis ASIM	
FITTINGS - B.W.			ASTM	A-100 GR D	ASTM	4-106 GR B	<u> </u>
EX. REDUCERS			wall thick	(ness & ANSI B16 0			
FITTINGS - B.W.			ASTM	A-234 WPB to nine		-234 W/PR to pipe	
REDUCERS ONLY			wall thick	mess & ANSI B16.9	wall thick		
FITTINGS	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM A	-105 3000# ES to	
SCREWED/S.W.	ļ	ANSI B16.11	⊿	NSI B16.11	A	NSI B16.11	1
COUPLINGS	ASTM	A-105 6000# FS to	ASTM /	A-105 6000# FS to	ASTM A	-105 6000# FS to	· · · · · · · · · · · · · · · · · · ·
	<i>F</i>	ANSI B16.11	A	NSI B16.11	A	NSI B16.11	1
THREADOLETS/	ASTM	A-105 3000# FS to	ASTM /	A-105 3000# FS to	ASTM A	-105 3000# FS to	
SOCKOLETS	<u> </u>	NSI B16.11	A	NSI B16.11	A	NSI B16.11	1
SWAGES	ASI	M A-106 GR B					
		Sch XXS FS	·				1
NIPPLES	ASI	M A-106 GR B					
	ASTM		ACTI	A 405 000 // DE 1			1
FLANGES	ASTIV	A-103 000# KF 10	ASTM	A-105 600# RF to	ASIM	A-105 600# RF to	
	/	ANSI D 10.5	<i>H</i>	ANSI B16.5	<i>P</i>	NSI B16.5	1
GASKETS	3.2mm	Flexitallic 316SS	3.2mm	Flexitallic 316SS	3.2mm	Flexitallic 316SS	
BOLTS	ASTM	A-193 B7M Bolts	ASTM	A-193 B7M Bolts	ASTM	A-193 B7M Bolts	
NUTS	ASTM A-	194 2HM Hex Nuts	ASTM A-	194 2HM Hex Nuts	ASTM A-	194 2HM Hex Nuts	
			<u></u>		· · · · · · · · · · · · · · · · · · ·		
NOTES: 1.	SCREWE	D CONNECTIONS T	O BE USE	D ONLY ON	<u> </u>		
:	SECONDA	ARY LINES AFTER F	LANGED	BLOCK VALVES.			
					BOWER E	DAMBERGER ROL NGINEERING LTD.	SETH
					Rev.: 0 F	ebruary 2005	

SPEC. DESIGNATION	ON	600 CPX					
	Internally	coated piping contai	ning swee	t hydrocarbon liquid &	& vapour, p	process air, caustic, v	vater,
LINE CONTENT	process of	drains, and vent syste	ems in tem	perature service betw	veen -29°C	C and 121°C	
DESIGN CODE		ANSI B-31.3 (latest)		RATING		600 # ANSI	
PRESSURE (DESIG	SN)	See Table I		TEMP. (DESIGN)		See Table I	
		Nil [Welded]				
CORROSION ALLC	WANCE	1.6mm (1/16") [So	crewed]	STRESS RELIEVE		No	
X-RAY		Full (100%)		TEST PRESSURE		1.5 x Design Pressu	re
SIZE RANGE	(1/2" to 11/	2") 21mm to 48mm	(2" to 6	") 60mm to 168mm	(8" & 0\	/er) 219mm & over	NOTES
WALL SCHEDULE		160	40 (ii	nternally coated)	Calculate	e (internally coated)	
DIDE	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	C.S. I	Pipe Smls ASTM	
* 10 tea		A-106 GR B		A-106 GR B		A-106 GR B	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM A	A-234 WPB to pipe	
EX. REDUCERS			wall thicl	ness & ANSI B16.9	wall thick	ness & ANSI B16.9	
FITTINGS - B.W.			ASIM	A-234 WPB to pipe	ASTM A	A-234 WPB to pipe	
REDUCERS ONLY	ACTM	A 405 2000# FO to	wall thick	(ness & ANSI B16.9	wall thick	ness & ANSI B16.9	
CDEWED	ASIMI	-100 0000# FO 10	ASIM	4-100 3000# FS 10	ASIMA	4-105 3000# FS to	
SCREWED	ASTM	105 6000# ES to	ACTM	ANSI B16.11		NSI B16.11	
COUPLINGS		NOI D16 11	ASTIVIA	4-103 0000# FS 10	ASTMA	4-103 0000# FS 10	
	ASTM	A-105 3000# ES to	ASTM	A-105 3000# FS to		105 3000# ES to	
THREADOLETS		ANSI B16 11		NSI B16 11		NSI B16 11	
	AST	M A-106 GR B	/		/``		
SWAGES		Sch 160 FS					
	AST	M A-106 GR B					
NIPPLES		Sch 160 FS					
			ASTM	A-105 600# RF to	ASTM	A-105 600# RF to	
				ANSI B16.5	ŀ	ANSI B16.5	1
GASKETS			3.2mm	Flexitallic 304SS	3.2mm	Flexitallic 304SS	
BOLTS			ASTN	1 A-193 B7 Bolts	ASTM	A-193 B7 Bolts	
NUTS			ASTM A	A-194 2H Hex Nuts	ASTM A	-194 2H Hex Nuts	
					<u>.</u>		
NOTES: 1.	21MM TC	48MM FLANGES 60	00# SCRD	. OR		<u></u>	
	SOCKET	WELD RF.					
				Ī	BOWER	R DAMBERGER ROL	SETH
ENGINEERING LTD.							
				Γ			
				1	Rev.: 0	February 2005	

SPEC. DESIGNATIO	DN	600 PY					
	Sweet hy	Sweet hydrocarbon liquid & vapor, process drains, water, vent, and utility steam in temperature					
LINE CONTENT	service b	etween 121°C and 20	0°C				
DESIGN CODE		ANSI B-31.3 (latest)		RATING		600 # ANSI	
PRESSURE (DESIG	N)	Refer to Line List		TEMP. (DESIGN)		Refer to Line List	
CORROSION ALLO	WANCE	1.6mm (1/16") ·		STRESS RELIEVE		No	
X-RAY		10%		TEST PRESSURE		15307 kPag	
	<u> </u>				(2	2", 4" & over)	
SIZE RANGE	(1⁄2" to 1	1⁄2") 21mm to 48mm	(21/2",	3") 73mm, 89mm	60mn	n, 114mm & over	NOTES
WALL SCHEDULE		160		40		Calculate	
	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	
PIPE		A-106 GR B		A-106 GR B		A-106 GR B	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM	A-234 WPB to pipe	
EX. REDUCERS			wall thic	kness & ANSI B16.9	wall thic	kness & ANSI B16.9	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM /	A-234 WPB to pipe	
REDUCERS ONLY			wall thicl	kness & ANSI B16.9	wall thicl	kness & ANSI B16.9	
FITTINGS	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	
SCREWED/S.W.	/	ANSI B16.15/	/	ANSI B16.11	A	ANSI B16.11	
COUPLINGS	ASTM	A-105 6000# FS to	ASTM.	A-105 6000# FS to	ASTM	A-106 6000# FS to	
COUPLINGS	/	ANSI B16.11	/	ANSI B16.11	/	ANSI B16.11	
THREADOLETS/	ASTM	A-105 3000# FS to	ASTM.	A-105 3000# FS to	ASTM	A-105 3000# FS to	
SOCKOLETS	1	ANSI B16.11	/	ANSI B16.11	/	ANSI B16.11	
SWAGES	AS⁻	TM A-106 GR B					
		Sch 160 FS		·····			
	AS	IM A-106 GR B					
	10714	Sch 160 FS			ACTM	A 105 600# DE to	
FLANGES	ASIM	A-105 600# RF to	ASIM	A-105 600# RF to	ASTM		4
		ANSI B16.5		ANSI B16.5		ANSI 816.5	1
GASKETS		Grafoil		Grafoil		Grafoil	
BOLTS	ASTI	VI A-193 B7 Bolts	ASTI	A A-193 B7 Bolts	AST	M A-193 B7 Bolts	
NUTS	ASTM	A-194 2H Hex Nuts	ASTM /	A-194 2H Hex Nuts	ASTM /	A-194 2H Hex Nuts	
			1				
				<u>., .,</u>			
		· · · · · · · · · · · · · · · · ·				<u></u>	
		<u></u>		. <u></u>		a a construction of the second se	
			*				
	04111						
NOTES: 1.	SOCKET	U 481MINI FLANGES 6 I WELD RF.	00# SCRI	J. UK			
					BOWE	R DAMBERGER RO ENGINEERING LTD	LSETH
					Rev.: 0	May 2005	

SPEC. DESIGNATION	ON	600 PZ					
LINE CONTENT	Process	and utility steam in te	mperature	e service between 200	0°C and 31	15°C	
DESIGN CODE		ANSI B-31.3 (latest)		RATING		600 # ANSI	
PRESSURE (DESIG	SN)	Refer to Line List		TEMP. (DESIGN)		Refer to Line List	
CORROSION ALLO	WANCE	1.6mm (1/16")		STRESS RELIEVE		No	
X-RAY		10%		TEST PRESSURE		1.5 x Design Pressu	re
			1		C C	2". 4" & over)	T
SIZE RANGE	(1⁄2" to 1	1⁄2") 21mm to 48mm	(21/2",	3") 73mm, 89mm	60mn	n. 114mm & over	NOTES
WALL SCHEDULE		160		40		Calculate	
	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	C.S.	Pipe Smls ASTM	<u> </u>
PIPE		А-106 GR В		A-106 GR B		A-106 GR B	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM	A-234 WPB to pipe	
EX. REDUCERS			wall thicl	kness & ANSI B16.9	wall thick	kness & ANSI B16.9	
FITTINGS - B.W.			ASTM	A-234 WPB to pipe	ASTM	A-234 WPB to pipe	
REDUCERS ONLY			wall thick	ness & ANSI B16.9	wall thick	ness & ANSI B16.9	
FITTINGS	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	
SCREWED/S.W.	/	ANSI B16.11		ANSI B16.11	A	NSI B16.11	
	ASTM	A-105 6000# FS to	ASTM	A-105 6000# FS to	ASTM	A-105 6000# FS to	
COUPLINGS	/	ANSI B16.11		NSI B16.11	A	NSI B16.11	
THREADOLETS/	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	ASTM	A-105 3000# FS to	
SOCKOLETS	4	ANSI B16.11	ļ A	NSI B16.11	A	NSI B16.11	
SWACES	AS1	ГМ A-106 GR B					
SWAGES		Sch 160 FS					
	AST	ГМ A-106 GR B					
		Sch 160 FS					
FLANGES	ASTM	A-105 600# RF to ANSI B16.5	ASTM	A-105 600# RF to ANSI B16.5	ASTM	A-105 600# RF to ANSI B16.5	1
GASKETS		Grafoil		Grafoil		Grafoil	
BOLTS	AST	/I A-193 B7 Bolts	ASTN	1 A-193 B7 Bolts	ASTM	1 A-193 B7 Bolts	
NUTS	ASTM 4	A-194 2H Hex Nuts	ASTM A	A-194 2H Hex Nuts	ASTM A	-194 2H Hex Nuts	
	<u></u>		. <u> </u>				
NOTES: 1.	21MM TO SOCKET	48MM FLANGES 60 WELD RF.	00# SCRD	. OR	BOWEF	R DAMBERGER ROL ENGINEERING LTD.	SETH
					Rev.: 0	February 2005	

Valve Tag:	BA-101X (150# RP) BA-301X (300# RP)	BA-111X (150# FP) BA-311X (300# FP)
	BA-601X (600# RP)	BA-611X (600# FP)

Service Condition:	Max Swee	121 C t Service
Pressure/Temperature	Ratings:	150/300/600 ANSI R.F. Valves to be rated for full ANSI service at temp (240 psig for 150 ANSI) (665 psig for 300 ANSI, 1340 psig for 600 ANSI)
Size:		2" – 8" NPS 150# (Floating Ball Design) 2" – 6" NPS 300# (Floating Ball Design) 2" – 4" NPS 600# (Floating Ball Design)

Francisco	
Body/Bonnet:	ASME B16.34 – API-6D – BS 5351
U U	A216 WCB or A352 LCC (Split Bo
Rolting:	B7M / L7M

Material Specification Chart:

	A216 WCB or A352 LCC (Split Body Design)
Bolting:	B7M / L7M
Ball:	4 RMS FINISH, CF8M/316SS
Seat:	RTFE / DEVLON
Stem:	316SS (Blow out proof)
Packing Box:	Extra deep, machined finish for low emissions
Packing:	Live-loaded die formed, high & low density graphite rings, with static sealed stem retainer, (HSN Seals)
Mounting Pad:	ISO 5211 design with locking provision
Operator:	Lever*

Certification Required: API 607 "Fire Safe" Recommended Manufacturer: Kuka Figure # CCA15BGLN – Reduced port 150 ANSI CBA15BGLN – Full port 150 ANSI CCA30BGLN – Reduced port 300 ANSI CBA30BGLN – Full port 300 ANSI

CEA50BGLN – Full port 500 ANSI CCA60BVLN – Reduced port 600 ANSI CBA60BVLN – Full port 600 ANSI

Notes: LN changes to GN for Gear Operated valves* BG or BV changes to LG or LV if low temp valves are used as a substitution

Valve Tag:	BA-101SX (150# RP)	BA-111SX (150# FP)
-	BA-301SX (300# RP)	BA-311SX (300# FP)
	BA-601SX (600# RP)	BA-611SX (600# FP)

Service Condition:	Max 121 C Sour Service (2.5 H2S in gas) in produced Oil & Water
Pressure/Temperature Rati	ngs: 150/300/600 ANSI R.F. Valves to be rated for full ANSI service at temp (240 psig for 150 ANSI) (665 psig for 300 ANSI, 1340 psig for 600 ANSI)
Size:	2" – 8" NPS 150# (Floating Ball Design) 2" – 6" NPS 300# (Floating Ball Design) 2" – 4" NPS 600# (Floating Ball Design)

Material Specification Chart:

Body/Bonnet:	ASME B16.34 – API-6D – BS 5351		
	A216 WCB or A352 LCC (Split Body Design)		
Bolting:	B7M / L7M		
Ball:	4 RMS FINISH, CF8M/316SS		
Seat:	RTFE / DEVLON		
Stem:	316SS (Blow out proof)		
Packing Box:	Extra deep, machined finish for low emissions		
Packing:	Live-loaded die formed, high & low density graphite rings, with static sealed stem retainer, (HSN seals)		
Mounting Pad:	ISO 5211 design with locking provision		
Operator:	Lever*		
Certification Requi Recommended Mar	red: API 607 "Fire Safe", NACE MR 0175, 2002 nufacturer: Kuka Figure #: CCA15BGLN – Reduced port 150 ANSI CBA15BGLN – Full port 150 ANSI CCA30BGLN – Reduced port 300 ANSI CBA30BGLN – Full port 300 ANSI		
	CCA60BVLN – Reduced port 600 ANSI		
	CBA60BVLN – Full port 600 ANSI		
Notes:	LN Changes to GN for Gear operated valves* BG or BV changes to LG or LV if low temp valves are used as a substitution		

Valve Tag:	BA-101SY (150# RP)	BA-111SY (150# FP)
C C	BA-301SY (300# RP)	BA-311SY (300# FP)
	BA-601SY (600# RP)	BA-611SY (600# FP)

Service Condition:	Max 200 C Sour Service (2.5 H2S in gas) in produced Oil & Water
Pressure/Temperature Rati	ngs: 150/300/600 ANSI R.F. Valves to be rated for full ANSI service at temp (200 psig for 150 ANSI) (635 psig for 300 ANSI, 1270 psig for 600 ANSI)
Size:	2" – 8" NPS 150# (Floating Ball Design) 2" – 6" NPS 300# (Floating Ball Design) 2" – 4" NPS 600# (Floating Ball Design)

Material Specification Chart:

Body/Bonnet:	ASME B16.3	4 – API-6D – BS 5351
-	A216 WCB o	r A352 LCC (Split Body Design)
Bolting:	B7M / L7M	
Ball:	4 RMS FINISH, CF8M/316SS	
Seat:	PEEK PFSD	
Stem:	316SS (Blow out proof)	
Packing Box:	Extra deep, machined finish for low emissions	
Packing:	Live-loaded die formed, high & low density graphite rings,	
-	with static se	aled stem seal retainer, (HSN Seals)
Mounting Pad:	ISO 5211 design with locking provision	
Operator:	Lever*	
Certification Requi	red:	API 607 "Fire Safe", NACE MR 0175, 2002
Recommended Mar	ufacturer:	Kuka
		Figure #
		CCA15BKLN – Reduced port 150 ANSI
		CBA15BKLN – Full port 150 ANSI
		CCA30BKLN – Reduced port 300 ANSI
		CBA30BKLN – Full port 300 ANSI
		CCA60BKLN – Reduced port 600 ANSI
		CBA60BKLN Full port 600 ANSI
Notes UN cl	nanges to GN f	or Gear Operated valves*
BK cl	hanges to LK i	f low temp valves are used as a substitution.
Dire		

Valve Tag:	BA-121SX (150# RP)	BA-131SX (150# FP)
-	BA-321SX (300# RP)	BA-331SX (300# FP)
	BA-621SX (600# RP)	BA-631SX (600# FP)

Service Condition: M Service Condition: Service Service Condition: Service Service Condition: Service	Max 121 C Sour Service (2.5 H2S in gas) in produced Oil & Water. Smaller isolation / critical applications	
Pressure/Temperature Rating	s: 150/300/600 ANSI R.F. Valves to be rated for full ANSI service at temp (250 psig for 150 ANSI) (665 psig for 300 ANSI, 1335 psig for 600 ANSI)	
Size:	2" – 16" Bore (Trunnion Ball Design)	

Material Specification Chart:		
Body/Bonne	t: ASME B16.34 – API-6D – BS 5351	
	A216 WCB or A352 LCC (Split Body Design)	
Bolting:	B7M / L7M	
Ball:	4 RMS FINISH, CF8M/316SS	
Seat:	PTFE*, DEVLON*	
Stem:	316SS (Blow out proof)	
Packing Box	Extra deep, machined finish for low emissions	
Packing:	Stem Seal with self cleaning die formed, high & low density	
_	graphite rings, and static sealed O-rings (HSN seals).	
Mounting P	ad: ISO 5211 design with locking provision	
Operator:	Lever, or Worm Gear Operator for 6" and larger or wherever	
-	preferred.	
Certification	Certification Required: API 607 "Fire Safe", NACE MR 0175, 2002	
Recommended Manufacturer: Kuka		
	Figure #:	
	CGA15BGLS – Reduced port 150 ANSI	
	CFA15BGLS – Full port 150 ANSI	
	CGA30BGLS – Reduced port 300 ANSI	
	CFA30BGLS – Full port 300 ANSI	
	CGA60BVLS – Reduced port 600 ANSI	
	CFA60BVLS – Full port 600 ANSI	
Notes:	DEVLON is used in 600# & higher.	
	LS Changes to GS for Gear operated valves.	
	BG & BV change to LG & LV if low temp valves are used as	
	a substitution.	
	4" FP & larger Trunnion mounted ball valves are furnished with	
	emergency sealant & stem seal injection fittings.	

Valve Tag:	BA-121SY (150# RP)	BA-131SY (150# FP)
-	BA-321SY (300# RP)	BA-331SY (300# FP)
	BA-621SY (600# RP)	BA-631SY (600# FP)

Service Condition: M Solution: Solution: Solut	Max 200 C Sour Service (2.5 H2S in gas) in produced Oil & Water. Smaller isolation / critical applications	
Pressure/Temperature Rating	s: 150/300/600 ANSI R.F. Valves to be rated for full ANSI service at temp (200 psig for 150 ANSI) (635 psig for 300 ANSI, 1270 psig for 600 ANSI)	
Size:	2" – 16" Bore (Trunnion Ball Design)	

Material Specification Chart:

Body/Bonnet:	ASME B16.34 – API-6D – BS 5351	
v	A216 WCB or A352 LCC (Split Body Design)	
Bolting:	B7M / L7M	
Ball:	4 RMS FINISH, CF8M/316SS	
Seat:	PEEK PFSD	
Stem:	316SS (Blow out proof)	
Packing Box:	Extra deep, machined finish for low emissions	
Packing:	Stem Seal with self cleaning die formed, high & low density	
-	graphite rings, and static sealed O-rings (HSN seals).	
Mounting Pad:	ISO 5211 design with locking provision	
Operator:	Lever, or Worm Gear Operator for 6" and larger or wherever	
-	preferred.	
Certification Requir	red: API 607 "Fire Safe", NACE MR 0175, 2002	
Recommended Man	ufacturer: Kuka	
	Figure #:	
	CGA15BKLS – Reduced port 150 ANSI	
	CFA15BKLS – Full port 150 ANSI	
	CGA30BKLS – Reduced port 300 ANSI	
	CFA30BKLS – Full port 300 ANSI	
	CGA60BKLS – Reduced port 600 ANSI	
	CFA60BKLS – Full port 600 ANSI	
	compass to CS for Coor operated values	
Notes: LS CI	langes to Go for Gear operated valves.	
BK ch	langes to LK II low temp valves are used as a substitution.	
4" FP	& larger Trunnion mounted ball valves are furnished with	
emerg	gency sealant & stem seal injection fittings.	
Valve Tag:	BA-103X (RP)	BA-113X (FP)
------------	--------------	---------------------
-	BA-303X (RP)	BA-313X (FP)
	BA-603X (RP)	BA-613X (FP)

Service Condition:	Max Swee	121 C t Service
Pressure/Temperati	ure Ratings:	3000# WOG C.S. Valves threaded or socket weld ends
Size:		¹ / ₂ " – 1 ¹ / ₂ " Bore (Floating Ball Design)
Material Specificati	on Chart:	
Body/Cap:	ASME B16.	34 - API-6D - API-6A - CSAZ245.15
Polting	ASTNI AIUS Not applicab	ASTM A0/5 Gr. /0 (5 piece Inreaded Design)
Bolli	alles	ne
Seat:	Delrin AF	
Stem:	17-4 PH SS	
Seat/Body O-ring:	Viton / Vitor	a
Gland Flange:	Carbon Stee	Plated with locking provision
Packing:	Filled TFE v	vith stainless steel packing follower
Thrust Washer:	Delrin	L D
Operator:	Lever (ducti	le iron)
Recommended Man	ufacturer:	NUTRON
		Figure #
		13-R10830B
Notes: R10 i	ndicates a 1"	reduced port valve.
F15 in	ndicates a $1\frac{1}{2}$	" full port valve
05 1	277	
U/%	/4 ^{//}	
10 1	1/, 97	
20 2)))	
	-	

Valve Tag:	BA-103SX (RP)	BA-113SX (FP)
	BA-303SX (RP)	BA-313SX (FP)
	BA-603SX (RP)	BA-613SX (FP)

Garden Car Billion	<u>р</u>	101 0
Service Condition:	Max	
	Sour	Service (2.5 H25 in gas) in produced Oil & water
Pressure/Temperat	ure Ratings:	3000# WOG C.S. Valves threaded or socket weld ends
Size:		1/2" – 2" NPS (Floating Ball Design)
Material Specificat	ion Chart:	
Body/Can	ASME B16	34 – API-6D – API-6A – CSA7245 15
Douy/Cup.	ASTM A105	54 = A1 - 00 = A1 - 0A = CSAL243.15 S / ASTM A675 Gr. 70 (3 niece Threaded Design)
Bolting .	Not annlical	ole
Ball:	316SS	
Seat:	Delrin AF	
Stem:	17-4 PH SS	
Seat/Body O-ring:	Viton / Vito	n
Gland Flange:	Carbon Stee	Plated with locking provision
Packing:	Filled TFE v	vith stainless steel packing follower
Thrust Washer:	Delrin	
Operator:	Lever (ducti	le iron)
Certification Requi	red:	NACE MR 0175, 2002
Recommended Mai	nufacturer:	NUTRON
		Figure #
		T3-R10S30S
Notes: R10 i	ndicates a 1"	reduced port valve.
F15 i	ndicates a 1 ¹ / ₂	" full port valve
05 1	/2"	F
07 3	/4"	
10 1	"	
15 1	1/2"	
20 - 2	,,	

Valve Tag:	BA-103SY (RP)	BA-113SY (FP)
	BA-303SY (RP)	BA-313SY (FP)
	BA-603SY (RP)	BA-613SY (FP)

Service Condition:	Max Sour	200 C Service (2.5 H2S in gas) in produced Oil & Water
Pressure/Temperat	ure Ratings:	3000# WOG C.S. Valves threaded or socket weld ends
Size:		1/2" – 2" NPS (Floating Ball Design)
Material Specificati	on Chart:	
Body/Cap:	ASME B16.	34 – API-6D – API-6A – CSAZ245.15
	ASTM A105	5 / ASTM A675 Gr. 70 (3 piece Threaded Design)
Bolting:	Not applical	ble
Ball:	316SS	
Seat:	PEEK	
Stem:	17-4 PH SS	
Seat/Body O-ring:	y: Viton / Viton	
Gland Flange:	Carbon Stee	l Plated with locking provision
Packing:	Filled TFE v	vith stainless steel packing follower
Thrust Washer:	Delrin	
Operator:	Lever (ducti	le iron)
Certification Requir	red:	NACE MR 0175, 2002
Recommended Man	ufacturer:	NUTRON
		Figure #
		T3-R10S30HP
Notes: R10 in	ndicates a 1" 1	reduced port valve.
F15 in	dicates a 1 ½	" full port valve
05 - 1/	/) , 2	
07 - ³ ⁄	/ * *	
10 - 1	"	
15 – 1	1/2"	
20 - 2	"	

Valve Tag:	BA-103SZ (RP)	BA-113SZ (FP)
0	BA-303SZ (RP)	BA-313SZ (FP)
	BA-603SZ (RP)	BA-613SZ (FP)

Service Condition:	Max Sour	316 C HIGH TEMPERATURE SERVICE Service (2.5 H2S in gas) in produced Oil & Water
Pressure/Temperati	ire Ratings:	2000# WOG C.S. Valves threaded or socket weld ends
Size:		1/2" – 1 1/2" NPS (Floating Ball Design)
Material Specificati	on Chart:	
Body/Can.	ASME B16	34 – API-6D – API-6A – CSAZ245.15
Bouy/Cap.	ASTM A105	5 / ASTM A675 Gr. 70 (3 piece Threaded Design)
Bolting:	Not applical	ble
Ball:	316SS	
Seat:	PEEK	
Stem:	17-4 PH SS	
Body seal:	Graphite	
Gland Flange:	Carbon Stee	el Plated with locking provision
Packing:	Graphite wi	th stainless steel packing follower
Inrust washer:	Deirin	ile iron)
Operator:	Lever (aucu	ис попу
Certification Requi	red:	NACE MR 0175, 2002
Recommended Mar	ufacturer:	NUTRON
		Figure #
		T3-R10S20HP
Notes: R10 i	ndicates a 1"	reduced port valve.
F15 in	ndicates a 1 ¼	a" full port valve
05 - 1	/2"	
$07 - \frac{3}{2}$	4 37	
	⁷⁷	
15-1	l 7⁄2″	

Rev: 0

Valve Tag: CH-101X (150#) CH-301X (300#) CH-601X (600#)

Service Condition: MAX 121 C SWEET SERVICE

Pressure/Temperature Ratings: 150#/300#/600# / ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (240 PSIG@150 ANSI) (665 PSIG@300 ANSI) Size : 2"-16" NPS. (1340 PSIG@600 ANSI)

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Clapper: A217 GR CA15 Seat: A105 / HF

Cover gasket: GRAPHITE SPIRAL WOUND (150/300/600#)

Certification Required: API 598 Recommended Manufacturer: TY FIGURE # 153RF008 (150#) # 253RF008 (300#) # 353RF008 (600#)

> NAVCO FIG# CS-R--R01W8 CS-R--R03W8 CS-R--R06W8

Deer Creek Phase II Valve Specifications

Swing Check Valve

Rev: 0

Valve Tag: CH-101SX (150#) CH-301SX (300#) CH-601SX (600#)

Service Condition: MAX 121 C SOUR SERVICE

Pressure/Temperature Ratings: 150#/300#/600# / ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (240 PSIG@150 ANSI) (665 PSIG@300 ANSI) Size :2"-16" NPS. (1340 psig@600 ANSI)

Material Specification Chart:

 Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600.

 A216-WCB

 Bolting:
 B7M

 Clapper:
 316SS

 Seat:
 316SS/ HF

Cover gasket: GRAPHITE SPIRAL WOUND (150/300/600#)

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: TY FIGURE # 153RF0012 (150#) # 253RF0012 (300#) # 353RF0012 (600#)

> NAVCO FIG# CS-R--R01W12 CS-R--R03W12 CS-R--R06W12

Rev: 0

Valve Tag: CH-101Z (150#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 150# ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (140 PSIG @ 150 ANSI)

Size : 2"-16" NPS.

Material Specification Chart:

 Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600.

 A216-WCB

 Bolting:
 B7

 Clapper:
 A216 WCB/HF or A217 GR CA15 / HF

 Seat:
 A105 / HF

Cover gasket: GRAPHITE SPIRAL WOUND (150#)

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #153RF005 (150#)

NAVCO FIG# CS-R—F01W5

Rev: 0

Valve Tag: CH-301Z (300#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 300# ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (550 PSIG @ 300 ANSI)

Size : 2"-16" NPS.

Material Specification Chart:

 Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600.

 A216-WCB

 Bolting:
 B7

 Clapper:
 A216 WCB/HF or A217 GR CA15 / HF

 Seat:
 A105 / HF

Cover gasket: GRAPHITE SPIRAL WOUND (300#)

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #253RF005 (300#)

NAVCO FIG# CS-R—F03W5

Rev: 0

Valve Tag: CH-601Z (600#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 600# ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (1095 PSIG @ 600 ANSI)

Size : 2"-16" NPS.

Material Specification Chart:

 Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600.

 A216-WCB

 Bolting:
 B7

 Clapper:
 A216 WCB/HF or A217 GR CA15 / HF

 Seat:
 A105 / HF

Cover gasket: GRAPHITE SPIRAL WOUND (600#)

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #353RF005 (600#)

NAVCO FIG# CS-R—F06W5

Forged Steel Piston Check Valve

Rev: 0

Valve Tag: CH-623Z (800#)

Service Condition: MAX 316 C HIGH TEMPERATURE SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1460 PSIG@ 316 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Threaded, Bolted Cap A105N.

Bolting:	B7M
Piston:	A182-F6a/HF
Seat:	A182-F6a/ HF
Bonnet gaske	t: GRAPHITE SPIRAL WOUND (800#)

Operator:

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# CP-R05S08A5

OR EQUAL.

Forged Steel Piston Check Valve

Rev: 0

Valve Tag: CH-624Z (800#)

Service Condition: MAX 316 C HIGH TEMPERATURE SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1460 PSIG@ 316 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Socket Weld, Bolted Cap A105N.

Bolting:	B7M
Piston:	A182-F6a/HF
Seat:	A182-F6a/ HF
Bonnet gas	ket: GRAPHITE SPIRAL WOUND (800#)

Operator:

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# CP-R05W08A5

OR EQUAL.

Forged Steel Piston Check Valve

Rev: 0

Valve Tag: CH-629Z (800#)

Service Condition: MAX 316 C HIGH TEMPERATURE SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1460 PSIG@ 316 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Socket Weld x Threaded, Bolted Cap A105N.

Bolting:	B7M
Piston:	A182-F6a/HF
Seat:	A182-F6a/ HF
Bonnet gaske	t: GRAPHITE SPIRAL WOUND (800#)

Operator:

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# CP-R05SW08A5

OR EQUAL.

Rev: 0

Valve Tag: GL-101X (150#) GL-301X (300#) GL-601X (600#)

Service Condition: MAX 121 C SWEET SERVICE

Pressure/Temperature Ratings: 150#/300#/600# / ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (240 PSIG@150 ANSI) (665 PSIG@300 ANSI) Size : 2"-12" NPS. (1340 PSIG@600 ANSI)

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Disc: A217 GR CA15 Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (150/300/600#)

Operator: HANDWHEEL OP

Certification Required: API 598 Recommended Manufacturer: TY FIGURE # 152RF008 (150#) # 252RF008 (300#) # 352RF008 (600#)

> NAVCO FIG# GL-R--R01W8 GL-R--R03W8 GL-R--R06W8

Notes Gear operator on valves 10"-150# and larger 8"-300# and larger 6"-600# and larger

Rev: 0

Valve Tag: GL-101SX (150#) GL-301SX (300#) GL-601SX (600#)

Service Condition: MAX 121 C SOUR SERVICE

Pressure/Temperature Ratings: 150#/300#/600# / ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (240 PSIG@150 ANSI) (665 PSIG@300 ANSI) Size :2"-16" NPS. (1340 psig@600 ANSI)

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7M Disc: 316 SS Seat: 316SS/ HF Stem: A182 F316 Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (150/300/600#)

Operator: HANDWHEEL OP

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: TY FIGURE # 152RF0012 (150#) # 252RF0012 (300#) # 352RF0012 (600#)

> NAVCO FIG# GL-R--R01W12 GL-R--R03W12 GL-R--R06W12

Notes: Gear operator on valves 10"-150# and larger 8"-300# and larger 6"-600# and larger

Rev: 0

Valve Tag: GL-601Y (600#)

Service Condition: MAX 200 C SWEET SERVICE

Pressure/Temperature Ratings: 600# / ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (1270 PSIG @ 600 ANSI)

Size : 2"-6" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Disc: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (600#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #352RF005 (600#)

NAVCO FIG# GL-R—R06W5

Notes Gear operator on valves 6"-600# and larger.

Rev: 0

Valve Tag: GL-101Z (150#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 150# ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (140 PSIG @ 150 ANSI)

Size : 2"-6" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Disc: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (150#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #152RF005 (150#)

NAVCO FIG# GL-R—R01W5

Rev: 0

Valve Tag: GL-301Z (300#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 300# ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (550 PSIG @ 300 ANSI)

Size : 2"-6" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Disc: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (300#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #252RF005 (300#)

NAVCO FIG# GL-R—R03W5

Rev: 0

Valve Tag: GL-601Z (600#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 600# ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (1095 PSIG @ 600 ANSI)

Size : 2"-6" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Disc: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (600#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #352RF005 (600#)

NAVCO FIG# GL-R—R06W5

Notes Gear operator on valves 6"-600# and larger.

Rev: 0

Valve Tag: GL-603SX (800#)

Service Condition: MAX 121 C SOUR SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1775 PSIG@ 121 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Threaded, OS&Y, B.B., A105N.

Bolting:	B7M
Piston:	316SS
Seat:	316SS/ HF
Bonnet gask	tet: GRAPHITE SPIRAL WOUND (800#)

Operator:

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# GL-R05S08A12

OR EQUAL.

Rev: 0

Valve Tag: GL-604SX (800#)

Service Condition: MAX 121 C SOUR SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1775 PSIG@ 121 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Socket weld, OS&Y, B.B., A105N.

Bolting:	B7M
Piston:	316SS
Seat:	316SS/ HF
Bonnet gasket: GRAPHITE SPIRAL WOUND (800#)	

Operator:

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# GL-R05W08A12

OR EQUAL.

Rev: 0

Valve Tag: GL-603Z (800#)

Service Condition: MAX 316 C HIGH TEMPERATURE SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1460 PSIG@ 316 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Threaded, OS&Y, B.B., A105N.

Bolting:	B7M
Piston:	A182-F6a/HF
Seat:	A182-F6a/ HF
Bonnet gaske	et: GRAPHITE SPIRAL WOUND (800#)

Operator:

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# GL-R05S08A5

OR EQUAL.

Rev: 0

Valve Tag: GL-604Z (800#)

Service Condition: MAX 316 C HIGH TEMPERATURE SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1460 PSIG@ 316 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Socket Weld, OS&Y, B.B., A105N.

Bolting:	B7M
Piston:	A182-F6a/HF
Seat:	A182-F6a/ HF
Bonnet gasl	<pre>ket: GRAPHITE SPIRAL WOUND (800#)</pre>

Operator:

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# GL-R05W08A5

OR EQUAL.

Deer Creek Phase II Valve Specifications

Forged Steel Globe Valve

Rev: 0

Valve Tag: GL-609Z (800#)

Service Condition: MAX 316 C HIGH TEMPERATURE SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1460 PSIG@ 316 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Threaded x Socket weld, OS&Y, B.B., A105N.

Bolting:	B7M
Piston:	A182-F6a/HF
Seat:	A182-F6a/ HF
Bonnet gas	ket: GRAPHITE SPIRAL WOUND (800#)

Operator:

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# GL-R05SW08A5

OR EQUAL.

Rev: 0

Valve Tag: GA-111X (150#) GA-311X (300#) GA-611X (600#)

Service Condition: MAX 121 C SWEET SERVICE

Pressure/Temperature Ratings: 150#/300#/600# / ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (240 PSIG@150 ANSI) (665 PSIG@300 ANSI) Size :2"-16" NPS. (1340 psig@600 ANSI)

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Wedge: A217 GR CA15 Seat: A105/ HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (300/600#) GRAPHONIC (150 #)

Operator: HANDWHEEL OP

Certification Required: API 598 Recommended Manufacturer: TY FIGURE # 151RF008 (150#) # 251RF008 (300#) # 351RF008 (600#)

> NAVCO FIG# GA-R--R01W8 GA-R--R03W8 GA-R--R06W8

Notes: Gear operator on valves 16"-150# and larger 12"-300# and larger 10"-600# and larger

Deer Creek Phase II Valve Specifications

Gate Valve

Rev: 0

Valve Tag: GA-111SX (150#) GA-311SX (300#) GA-611SX (600#)

Service Condition: MAX 121 C SOUR SERVICE

Pressure/Temperature Ratings: 150#/300#/600# / ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (240 PSIG@150 ANSI) (665 PSIG@300 ANSI) Size :2"-16" NPS. (1340 psig@600 ANSI)

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7M Wedge: 316SS Seat: 316SS/HF Stem: A182 F316 Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (300/600#) GRAPHONIC (150 #)

Operator: HANDWHEEL OP

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: TY FIGURE # 151RF0012 (150#) # 251RF0012 (300#) # 351RF0012 (600#)

> NAVCO FIG# GA-R--R01W12 GA-R--R03W12 GA-R--R06W12

Notes: Gear operator on valves 16"-150# and larger 12"-300# and larger 10"-600# and larger

Deer Creek Phase II Valve Specifications

Gate Valve

Rev: 0

Valve Tag: GA-611Y (600#)

Service Condition: MAX 200 C SWEET SERVICE

Pressure/Temperature Ratings: 600# / ANSI RF FLGD. MAXIMUM PRESSURE TEMPERATURE RATING: (1270 PSIG @ 600 ANSI)

Size : 2"-16" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Wedge: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (600#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #351RF005 (600#)

NAVCO FIG# GA-R—R06W5

Notes Gear operator on valves 10"-600# and larger.

Rev: 0

Valve Tag: GA-111Z (150#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 150# ANSI RF MAXIMUM PRESSURE TEMPERATURE RATING: (140 PSIG @ 150 ANSI)

Size : 2"-12" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Wedge: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (150#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #151RF005 (150#)

NAVCO FIG# GA-R-R01W5

Deer Creek Phase II Valve Specifications

Gate Valve

Rev: 0

Valve Tag: GA-115Z (150#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 150# ANSI B/W. MAXIMUM PRESSURE TEMPERATURE RATING: (140 PSIG @ 150 ANSI)

Size : 2"-12" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Wedge: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (150#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #151BW005 (150#)

NAVCO FIG# GA-R-B01W5

Rev: 0

Valve Tag: GA-311Z (300#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 300# ANSI RF MAXIMUM PRESSURE TEMPERATURE RATING: (550 PSIG @ 300 ANSI)

Size : 2"-12" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Wedge: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (300#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #251RF005 (300#)

NAVCO FIG# GA-R-R03W5

Rev: 0

Valve Tag: GA-315Z (300#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 300# ANSI B/W. MAXIMUM PRESSURE TEMPERATURE RATING: (550 PSIG @ 300 ANSI)

Size : 2"-12" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Wedge: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (300#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #251BW005 (300#)

NAVCO FIG# GA-R-B03W5

Rev: 0

Valve Tag: GA-611Z (600#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 600# ANSI RF MAXIMUM PRESSURE TEMPERATURE RATING: (1095 PSIG @ 600 ANSI)

Size : 2"-12" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Wedge: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (600#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #351RF005 (600#)

NAVCO FIG# GA-R—R06W5

Notes Gear operator on valves 6"-600# and larger.

Rev: 0

Valve Tag: GA-615Z (600#)

Service Condition: MAX 316 C SWEET SERVICE

Pressure/Temperature Ratings: 600# ANSI B/W. MAXIMUM PRESSURE TEMPERATURE RATING: (1095 PSIG @ 600 ANSI)

Size : 2"-12" NPS.

Material Specification Chart:

Body/Bonnet: ASME B16.10, B16.5, B16.34, API 600. A216-WCB Bolting: B7 Wedge: A217 GR CA15 / HF Seat: A105 / HF Stem: A182 GR F6A Stem packing: GRAPHITE Bonnet gasket: GRAPHITE SPIRAL WOUND (600#)

Operator: HANDWHEEL OP

Certification Required: API 598

Recommended Manufacturer: TY FIGURE #351BW005 (600#)

NAVCO FIG# GA-R-B06W5

Notes Gear operator on valves 6"-600# and larger.

Forged Steel Gate Valve

Rev: 0

Valve Tag: GA-603SX (800#)

Service Condition: MAX 121 C SOUR SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1775 PSIG@ 121 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Screwed, OS&Y B.B. A105N.

Bolting:	B7M
Wedge:	316SS
Seat:	316SS/ HF
Stem:	A182 F316
Stem packi	ing: GRAPHITE
Bonnet gas	ket: GRAPHITE SPIRAL WOUND (800#)

Operator: HANDWHEEL OP

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# GA-R05S08A12

OR EQUAL.

Forged Steel Gate Valve

Rev: 0

Valve Tag: GA-604SX (800#)

Service Condition: MAX 121 C SOUR SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1775 PSIG@ 121 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Socket weld, OS&Y B.B. A105N.

Bolting:	B7M
Wedge:	316SS
Seat:	316SS/ HF
Stem:	A182 F316
Stem packi	ng: GRAPHITE
Bonnet gas	ket: GRAPHITE SPIRAL WOUND (800#)

Operator: HANDWHEEL OP

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# GA-R05W08A12

OR EQUAL.

Deer Creek Phase II Valve Specifications

Forged Steel Gate Valve

/Rev: 0

Valve Tag:GA-603Z (800#)

Service Condition: MAX 316 C HIGH TEMPERATURE SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1460 PSIG@ 316 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Threaded, OS&Y B.B. A105N.

Bolting:	B7M
Wedge:	A182-F6a/HF
Seat:	A182-F6a/ HF
Stem:	A182-F6a
Stem packi	ng: GRAPHITE
Bonnet gas	ket: GRAPHITE SPIRAL WOUND (800#)

Operator: HANDWHEEL OP

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# GA-R05S08A5

OR EQUAL.

Forged Steel Gate Valve

Rev: 0

Valve Tag: GA-604Z (800#)

Service Condition: MAX 316 C HIGH TEMPERATURE SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1460 PSIG@ 316 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Socket Weld, OS&Y B.B. A105N.

Bolting:	B7M
Wedge:	A182-F6a/HF
Seat:	A182-F6a/ HF
Stem:	A182-F6a
Stem packin	g: GRAPHITE
Bonnet gask	et: GRAPHITE SPIRAL WOUND (800#)

Operator: HANDWHEEL OP

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# GA-R05W08A5

OR EQUAL.
Deer Creek Phase II Valve Specifications

Forged Steel Gate Valve

Rev: 0

Valve Tag: GA-609Z (800#)

Service Condition: MAX 316 C HIGH TEMPERATURE SERVICE

Pressure/Temperature Ratings: 800 Class. MAXIMUM PRESSURE TEMPERATURE RATING: 1460 PSIG@ 316 C

Size : 1/4"-1 1/2"

Material Specification Chart:

Body/Bonnet: ASME B16.5, B16.10, B16.11, B16.34, API 602. Socket Weld x Threaded, OS&Y B.B. A105N.

Bolting:	B7M
Wedge:	A182-F6a/HF
Seat:	A182-F6a/ HF
Stem:	A182-F6a
Stem packin	g: GRAPHITE
Bonnet gask	et: GRAPHITE SPIRAL WOUND (800#)

Operator: HANDWHEEL OP

Certification Required: API 598. Nace MR-01-75-2002 Recommended Manufacturer: NAVCO FIG# GA-R05SW08A5

OR EQUAL.

Notes:

<u>Deer Creek Phase II valve Specul</u>	NeedleValves
Valve Tag: NE	
Service Condition: Max Sour	200 C Service (2.5 H2S in gas) in produced Oil & Water
Pressure/Temperature Ratings:	10,000# W.P. threaded end S.S.
Size:	1/4" – 3/4" NPS

Material Specificati	on Chart:	
Body/Bonnet:	ASTM A182	F 316SS
Stem:	ASM-5A-479	9 Type 316SS (Non-rotating)
Gland Packing:	PTFE	
Seat:	Hard seated	
Certification Requi	red:	NACE MR 0175, 2002
Recommended Ma	nufacturer:	Western Gauge Figure # WN13 ##
Notes: ## is 33 - 1 34 - 1 37 - 3 56 - 1	replaced by; /4" M*F /2" M*F /4" * 1⁄2" M*F /2" F*F	

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 63 of 70

APPENDIX XV

AREA CLASSIFICATION PLAN

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 64 of 70

APPENDIX XVI

OVERALL SINGLE LINE DIAGRAM

Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005

Page 65 of 70

APPENDIX XVII

PROJECT LOAD SUMMARY

bdr		LOAI	MMUS C	ARY							Rev :	5.0	
Project :	Joslyn Phase 2 SA	INCLUDING FUTURE INCLUDING FUTURE	LOAD (E	ESTIM	ATED	BY RC	F)				Date :	2005-02-2	5
No. :	33500	Ň					Max Oners	ating Loa	d (Include	se I GE a	nd RCE/	Nor	opoloto
Bus	Building	Description	Volts	ЧЧ	LGF	RCF	kΨ	kVA kVA	Amps	5 5 5 5 7 7	kvarl	kW K	kVA
SWGR-100	MCC-1	4160V Loads	4160	~		1 OF	NOA A	C 87 0					
MCC-1	MCC-1	Water/Even Area 480// MCC		יכ			0,004	307.6	0000	0.90	4,204	9,331	10,368
		VVale//Evap Alea 400V IVICO	400	n (_	CZ.	1,185	1,309	1,5/4	0.91	556	1,442	1,595
	MICC-Z	UII Process Area 480V MCC	480	ო		1.25	1,460	1,610	1,937	0.91	679	1,922	2,122
MCC-WP1	Wellpad 1 MCC	Wellpad 1 480V MCC	480	ო	1.25	1.25	591	655	787	0.90	282	490	545
MCC-WP2	Wellpad 2 MCC	Wellpad 2 480V MCC	480	ო	1.25	1.25	513	568	683	0.90	245	490	545
MCC-WP3	Wellpad 3 MCC	Wellpad 3 480V MCC	480	ო	1.25	1.25	435	482	580	0.90	207	490	545
MCC-WP4	Wellpad 4 MCC	Wellpad 4 480V MCC	480	ო	1.25	1.25	591	655	787	06.0	282	490	545
		Total	25000	ъ			13,578	15,060	348	06.0	6,515	14,657	16,265
Tot	al 4160V Load on S\	WGR-100 (includes LGF and RCF) = 4160V Loads + MCC-2	4160	e			10,264	11,392	1,581	06.0	4,943		
		Total Emergency Bus Load	480	е				306	KVA				
<mark>Legend:</mark> Tvpe∶M=Moi	tor T=Transformer R	t=Resistance D=Panel or nackared s	at timer	t V=V	/ED (v.o	toblo t					C		
		A NOUNDER TO MARK A MARKAN A MARKANA	i) III din h		בייק	laure	i adnai irì i	-n (anin	JOIL JUSI		UII Dreak	er C=Conta	ctor

.

Nameplate : Nameplate rating of load.

Units : Corresponding to Nameplate, must be one of : HP, kW, kVA.

Actual : Maximum running load in same units as Nameplate.

PF : Running power factor (0 to 1). Negative power factor indicates leading.

LF : Load factor (0 to 1) representing percentage of time unit is running at Actual load.

LGF : Load Growth Factor, estimated factor by which load will grow during detailed design.

RCF : Reserve Capacity Factor, estimated factor for future load growth, used for transformer sizing.

E/N : Emergency/normal.

Div : Area classification Division (Zone) 1 or 2.

SWGR-100				4160V Loads		Build		ţ		c	(
	Vendor /							5		Xe/	0.0	l		Date: 20	05-02-25	
Tac No.	Darkanar			:		Name					ო	ЧN	Σ	ax Operati	ng Load	
Ser Ser	Lachayer	RPU S	Building	Description	Type	Plate	Units Au	stual 1	막	Volt	群 s	Amps	kW	kV∆	Amne	LVAP
000-4	ionics	34500-6	Evaporator	VAPOUR COMPRESSOR	Σ	2250	HP 2	025 0	90	416	6	287 G	1573 B	1748 4	2407	1 0 3 2
P-582	lonics	33500-26	Evaporator	EVAP RECIRC PUMP	Σ	500	aH	001		1101) () (1.242	1.207
K-616	lonics	33500-6	Evanorator			0.00			2	Ź ł	°	00.8	310.0	340.4	47.9	150.5
P_507	lanice	33600 36			Σ	0922	HP N	0.252 0	.90	416	ო ი	287.6	1573.6	1748.4	242.7	762.1
700-1		07-00000	Evaporator	EVAP RECIRC PUMP	Σ	500	dH	00	90.	4160	с С	63.9	310.8	345 4	479	150 5
N-004	Neur. Boller		Steam Gen	COMBUSTION AIR BLOWER	Σ	500	ЧР	001	90	416	3	63.9	310.8	345.4	0.74	
K-605	Nebr. Boiler		Steam Gen	COMBUSTION AIR BLOWER	Σ	500		00	2		, , ,	0.00				C.UC1
K-677	lonics		Contallizar		2 :	200			202	4101		63.9	310.8	345.4	47.9	150.5
			CI ystallizer	VAPUK COMPRESSOR	Σ	1500	ΗÞ	200 0	90	416(е С	191.7	932.5	1036.1	143.8	451.6
T MCCO							ЧH	0	0 06.	416(о Э	0.0	0.0	0.0	00	00
				LACI Feeder	ш	1500	kva 1	500 0.	90 06.	1 4160	33	208.2	1080.0	1200.0	166.5	523.1
			MCC-2	MCC-2 4160-480 Xfmr Feed	⊢-	1500	kVA 1	500 0.	0 06.	416(с С	208.2	0.0	00	0.0	0.0
								ĺ					•	2	2	5
				Total				0	.90	416(33		6403.0	7114.5	987.4	3101.1

6403.0 7114.5

BDR Engineering

Page 2 of 8

O's Building Description
LUBE OIL COOLER
00-42 SEAL WATER COOLER N
LUBE OIL COOLER N
0-54 COULER FAN MULUK#1 D1-54 COOLER FAN MOTOR#2
0-54 COOLER FAN MOTOR#3
00-54 COOLER FAN MOTOR#4
00-54 COOLER FAN MOTOR#5
AUXILLIART BUILER FUWER OIL SLIMD LEATED
OIL SUMF REALER
Cooling Glycol INST AIR COMPRESSOR
Cooling Glycol INST AIR COMPRESSOR
FEED TANK MIXER
Recirc Pump
Feed Tank Mixer
Brine Tank Mixer
Condensate Pump
Silencer Urain Pump
23 FIARE AFEA FLAKE KU PUMP 00.26 CALESTIC DI IMP
00-26 PUMARY FEED PUMP
00-26 EVAP FEED PUMP
00-26 SEAL WATER PUMP
00-26 SEAL WATER PUMP
Water Pump BFW RECIRC PUMP
00-21 Water Pump LP BOILER FEEDWATER PL
00-21 Water Pump LP BOILER FEEDWATER F
K-606 AUX OIL PUMP
DAF PUMP
K-607 AUX OIL PUMP
00-35 GLYCOL CIRC PUMP
00-35 GLYCOL CIRC PUMP
00-74 Water Pump SOURCE WATER PUMPS
00-74 Water Pump SOURCE WATER PUMPS
00-74 Water Pump SOURCE WATER PUMPS
FLOOR DRAIN TANK PUMP
00-26 SECONDARY FEED PUMP
00-26 DISTILLATE PUMP
00-26 SECONDARY FEED PUMP
00-26 DISTILLATE PUMP
Area Utilities Xfrmr Emerg Bu
Area Utilities Xfrmr Normal
Area Heat Trace Xfmr
Area Heat Trace Xfmr
Area Exterior Ltg Xfmr

BDR Engineering

MCC-2				Oil Process Area 480V MCC		Build	ling : M	CC-2			Re	v: 5.0			Date: 2	005-02-2	0		
;	Vendor /		:			Name						33	đ	Ma	<pre>c Operati</pre>	ing Load		Nar	neplate
Tag No.	Packager	RPO's	Building	Description	Type	Plate	Units A	ctual P	 u.	E/N Emerg I	oad Vo	ts #	Amps	Ň	٨VA	Amps	KVAR	κw	kva
K-600	HC Process Sy	'st 33500-19		OIL VRU / LIQUID RING COMPR	Σ	125	₽	100	90	0	4	3	138.5	82.9	92.1	110.8	40.1	103.6	115.1
K-601	HC Process Sy	st 33500-19		OIL VRU / LIQUID RING COMPR	Σ	125	đ	100	90 06	2	4	3	138.5	41,4	46.0	55.4	20.1	103.6	115.1
K-603			Recycle	RECYCLE BURNER BLOWER	Σ	20	₽	16 0.	90 1	0	45	9	22.2	13.3	14.7	17.7	6.4	16.6	18.4
P-502			Recycle	LACT FEED PUMP	Σ	40	đ	32 0.	90 1	0	4	0	44.3	26.5	29.5	35.4	12.8	33.2	36.8
P-503	Nat. Oilwell	33500-23	Recycle	OFF SPEC OIL PUMP	>	20	₽	16 0.	90 1	0	4	0	22.2	13.3	14.7	17.7	6.4	16.6	18.4
P-505	Nat. Oilwell	33500-23	Recycle	SLOP OIL PUMP	>	20	₽	16 0.	90 1	0	48	3	22.2	13.3	14.7	17.7	6.4	16.6	18.4
P-506	Universal	33500-09	Recycle	REC TRTR RECIRC PUMP	Σ	20	Ħ	16 0.	90 06	9	48	о 9	22.2	6.6	7.4	8.9	3.2	16.6	18.4
P-507	Nat. Oilwell	33500-23	Recycle	SLOP WATER PUMP	>	20	ЧH	16 0.	90	0	4	3	22.2	13.3	14.7	17.7	6.4	16.6	18.4
P-509A	Brown/Union	33500-28	De-Oiling	SCO PUMP	Σ	30	ЧH	24 0.	90 1	0	4	3	33.2	19.9	22.1	26.6	9.6	24.9	27.6
P-509B	Brown/Union	33500-28	De-Oiling	SCO PUMP	Σ	90	₽	24 0.	90	0	48	9 0 3	33.2	19.9	22.1	26.6	9.6	24.9	27.6
P-509C	Brown/Union	33500-28	De-Oiling	SCO PUMP	Σ	30	₽	24 0.	0 06	0	45	3	33.2	0.0	0.0	0.0	0.0	24.9	27.6
P-510	Nat. Oilwell	33500-23	Recycle	REC TRTR OH DRAIN PUMP	>	ŝ	Ē	4	90	0	45	9	5.5	3.3	3.7	4.4	1.6	4.1	4.6
P-511			De-Oiling	SCO LACT PUMP	Σ	15	머	12 0.	90 1	0	4	е 0	16.6	9.9	11.1	13.3	4.8	12.4	13.8
P-512A			Steam Gen	PHOSPHATE PUMP	Σ	20	₽	16 0.	90 1	0	4	3	22.2	13.3	14.7	17.7	6.4	16.6	18.4
P-512B			Steam Gen	PHOSPHATE PUMP	Σ	20	₽	16 0.	0 06	0	45	0 3	22.2	0.0	0.0	0.0	0.0	16.6	18.4
P-513A			Steam Gen	BLOWDOWN TANK PUMPS	Σ	9	₽	8	90 1	0	48	3	11.1	6.6	7.4	8.9	3.2	8.3	9.2
P-513B			Steam Gen	BLOWDOWN TANK PUMPS	Σ	10	đH	8	0 06	0	4	9 0	11.1	0.0	0.0	0.0	0.0	8.3	9.2
P-521	Brown/Union	33500-27	De-Oiling	DESAND WASH WATER PUMP	Σ	8	đ	24 0.	90	0	4	3	33.2	19.9	22.1	26.6	9.6	24.9	27.6
P-522A	Kvaerner	33500-10		IGF OVERFLOW PUMP	Σ	ŝ	₽	4	90	0	4	3	5.5	3.3	3.7	4.4	1.6	4.1	4.6
P-522B	Kvaerner	33500-10		IGF OVERFLOW PUMP	Σ	5	ЧH	4	0 06	0	4	3	5.5	0.0	0.0	0.0	0.0	4,1	4.6
P-523A	Kvaerner	33500-10		IGF DISCH WATER RECYCLE PL	Σ	30	₽	24 0.	90 1	0	45	0 3	33.2	19.9	22.1	26.6	9.6	24.9	27.6
P-523B	Kvaerner	33500-10		IGF DISCH WATER RECYCLE PL	Σ	g	đ	24 0.	0 06	0	4	е 0	33.2	0.0	0.0	0.0	0.0	24.9	27.6
P-524	Westpower	33500-21	De-Oiling	ORF FEED PUMP	Σ	75	£	00	90	0	4	3	83.1	49.7	55.3	66.5	24.1	62.2	69.1
P-525A	Westpower	33500-68	De-Oiling	DE-OILED WATER PUMPS	Σ	50	đ	40	90	0	4	9 0	55.4	33.2	36.8	44.3	16.1	41.4	46.0
P-525B	Westpower	33500-68	De-Oiling	DE-OILED WATER PUMPS	Σ	20	₽	40	0 06	0	48	0 0	55.4	0.0	0.0	0.0	0.0	41.4	46.0
P-525C	Westpower	33500-68	De-Oiling	DE-OILED WATER PUMPS	Σ	20	£	4 0	000	0	4	9 0	55.4	0.0	0.0	0.0	0.0	41,4	46.0
P-526	HC Process Sy	st 33500-19		VRU CONDENSATE PUMP	Σ	7	₽	1.6	90	0	4	о О	2.2	1.3	1.5	1.8	0.6	1.7	1.8
P-534	Westpower	33500-21	De-Oiling	ORF RECYCLE PUMP	Σ	75	₽	60 0.	90	0	4	0 0	83.1	49.7	55.3	66.5	24.1	62.2	69.1
P-541A	KSB Pumps	33500-20	Steam Gen	HP BOILER FEEDWATER PUMP	s	300	₽	240 0.	90	0	4	0 0	332.3	198.9	221.0	265.9	96.3	248.7	276.3
P-541B	KSB Pumps	33500-20	Steam Gen	HP BOILER FEEDWATER PUMP	s S	300	£ :	240 0.	90	0	4	3	332.3	198.9	221.0	265.9	96.3	248.7	276.3
P-541C	KSB PUMps	33500-20	Steam Gen	HP BOILER FEEUWALER PUMP	<i>v</i> :	000 2000	£	240 0.	0 00	0 ! I	¥	0	332.3	0.0	0.0	0.0	0.0	248.7	276.3
C400-1	Westpower	00200 40	Chool Heater		Σ :	28	Ì	9 9 9 9		лг Б	4	е о о о	22.2	13.3	14.7	17.7	6.4	16.6	18.4
P-555	Nat Oilwell	33500-23	De-Oilinn		2 >	2 u	5	2 -			¥ ¥	, , ,	777) ()	0.0	0.0	0.0	10.0	4.91
P-557	Nat. Oilwell	33500-23	Recycle		• >	, c	- -	19	86		Ť) () (0.0	0 0 0 0 0		4 F	0.4	- 4 - 0	4 Ç
P-559A	Brown/Union	33500-29		SKIM FEED PUMP	Σ	40	£	32	90		4) () (44.3	292	205	35.4	10.8	33.0	1.0.1 B. B.
P-559B	Brown/Union	33500-29		SKIM FEED PUMP	Σ	40	đH	32 0.	0 06	0	4	0	44.3	0.0	0.0	0.0	0.0	33.2	36.8
TA-116				ORF AGITATOR	Σ	10	ЧH	8	90	0	48	0 3	11.1	6.6	7.4	8.9	3.2	8.3	9.2
TA-117				ORF AGITATOR	Σ	10	₽	8	90 1	0	45	3	11.1	6.6	7.4	8.9	3.2	8.3	9.2
				Area Utilities Xfrmr Emerg Bus	-4	45	kVA	36 0.	95 0.7	5 E 27	4	3	54.1	25.7	27.0	32.5	8.4	42.8	45.0
				Area Utilities Xfrmr Normal Bus	⊢	45	kVA	36 0.	95 0.7	5 0	4	3	54.1	25.7	27.0	32.5	8.4	42.8	45.0
				Area Heat Trace Xfmr	⊢	45	kVA	36 0.	95 0.7	5 E 27	4	3	54.1	25.7	27.0	32.5	8.4	42.8	45.0
				Area Heat Trace Xfmr	-	45	kVA	36 0.	95 0.7	5 E 27	4	3	54.1	25.7	27.0	32.5	8.4	42.8	45.0
				Area Exterior Ltg Xfmr	-	8	kVA	24 0.	95 0.1	0	4	0 0	36.1	11.4	12.0	14.4	3.7	28.5	30.0
				Office Area 480 V Feeder	m i	8	kVA	24 0.	95 0.5	5 E 12	48	0 0	36.1	11.4	12.0	14,4	3.7	28.5	30.0
				Office Area 120 V UPS Feed	ш	15	KVA	12	95 0.7	о Ш	4	e O	18.0	8.6	9.0	10.8	2.8	14.3	15.0
				Totals				Ö	91	118	48	3	2552.2	1062.0	1171.0	1408 5	4035	1022.4	2121 B
				1 .							:	,			2	0.004	つうりた	1.370	0.1212

Project Load Sommary.xls

Page 4 of 8

BDR Engineering

MCC-WP1	Welipad 1 480V MCC		Bui	lding :	Wellpad	d 1 MC	۔ د	Rev: 5	0.			Date: 2	2005-02-2	5		
			Name	1						dN N	Ma	x Operat	ting Load		Nam	eplate
Tag No.	Description	Type	Plate	Units	Actual	ЪF	Ц	Volts F	<u>ہ</u>	Amps	kW	kva	Amps	kVAR	kW	kVA
K-607	VRU Compressor	>	150	Ę	120	0.90	-	480	e	166.2	99.5	110.5	132.9	48.2	124.3	138.1
K-601A	Air Compressor	Σ	5	Ę	4	0.75	-	480	e	6.6	3.3	4.4	5.3	2.9	4.1	5.5
K-601B	Air Compressor	Σ	5	ЧH	4	0.75	0	480	e	6.6	0.0	0.0	0.0	0.0	4.1	5.5
P-501	Flare KO Drum Pump	Σ	5	ЧH	4	0.75	0.25	480	ო	6.6	0.8	1.1	1.3	0.7	4.1	5.5
WP5-1	Wellhead Pump	Σ	75	đĦ	60	0.90		480	e	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-2	Wellhead Pump	Σ	75	đĦ	60	06.0	-	480	ო	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-3	Wellhead Pump	Σ	75	ЧH	60	0.90	-	480	e	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-4	Wellhead Pump	Σ	75	ЧH	60	0.90	-	480	e	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-5	Wellhead Pump	Σ	75	ЧH	60	06.0		480	e	83.1	49.7	55.3	66.5	24.1	62.2	69.1
	Site Utilities/Heat Trace	⊢	45	k٧A	36	0.95	0.75	480	с	54.1	25.7	27.0	32.5	8.4	42.8	45.0
	Total					0.90		480	3		377.9	418.9	503.9	180.7	490.4	545.1

_
5
_
· 🗖
â.
Ψ
D)
-
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ш
~
ш.
Ó.
~
ш

Page 5 of 8

MCC-WP2	Wellpad 2 480V MCC		Buil	lding :	Weilpad	d 2 MC	ö	Rev : 5	0.0			Date: 2	005-02-2	5		
			Name							dN	Ma	x Operat	ing Load		Nam	eplate
Tag No.	Description	Type	Plate	Units	Actual	Цd	Ц	Volts	A A	mps	kW	kVA	Amps	<b>KVAR</b>	kW	kva.
K-607	VRU Compressor	>	150	ЧН	120	06.0	-	480	с С	66.2	99.5	110.5	132.9	48.2	124.3	138.1
K-601A	Air Compressor	Σ	S	ЧH	4	0.75	-	480	ო	6.6	3.3	4.4	5.3	2.9	4.1	5.5
K-601B	Air Compressor	Σ	Ŋ	ЧH	4	0.75	0	480	ო	6.6	0.0	0.0	0.0	0.0	4.1	5.5
P-501	Flare KO Drum Pump	Σ	ß	ЧH	4	0.75	0.25	480	e	6.6	0.8	~ ~	13	0.7	41	5.5
WP5-1	Wellhead Pump	Σ	75	ЧH	60	0.90	<b>~~</b>	480	ო	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-2	Wellhead Pump	Σ	75	ЧH	60	0.90	-	480	ო	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-3	Wellhead Pump	Σ	75	ЧH	60	0.90	-	480	e	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-4	Wellhead Pump	Σ	75	ЧH	60	0.90	-	480	ო	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-5	Future Wellhead Pump	Σ	75	ЧH	60	0.90	0	480	e	83.1	0.0	0.0	0.0	0.0	62.2	69.1
	Site Utilities/Heat Trace	⊢	45	kvA	36	0.95	0.75	480	ო	54.1	25.7	27.0	32.5	8.4	42.8	45.0
	Total					0.90		480	6		328.2	363.6	437.4	156.6	490.4	545.1

Ö
÷.
- <b>-</b>
-
e a
- ðh
<u>۳</u>
<b>C</b>
•
σ
~
h
***
<b></b>
Υ.
_
$\sim$
-
~
<u> </u>

Page 6 of 8

MCC-WP3	Welipad 3 480V MCC		Bui	ding :	Wellpad	1 3 MC	с U	Rev: 5	0.0			Date: 2	005-02-2	5		
			Name							A N	Ma	x Operat	ing Loac		Nan	neplate
Tag No.	Description	Type	Plate	Units	Actual	ЪГ	۲	Volts	Ph A	vmps	kW	<b>k</b> VA	Amps	<b>kVAR</b>	kW	kVA
K-607	VRU Compressor	>	150	₽	120	0.90		480	ന	166.2	99.5	110.5	132.9	48.2	124.3	138.1
K-601A	Air Compressor	Σ	ъ	дH	4	0.75	•	480	ო	6.6	3.3	4.4	5.3	2.9	4.1	5.5
K-601B	Air Compressor	Σ	£	đ	4	0.75	0	480	e	6.6	0.0	0.0	0.0	0.0	4.1	5.5
P-501	Flare KO Drum Pump	Σ	£	đ	4	0.75	0.25	480	ო	6.6	0.8	1.1	1.3	0.7	4.1	5.5
WP5-1	Wellhead Pump	Σ	75	đ	60	0.90	<del>~~</del>	480	ო	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-2	Wellhead Pump	Σ	75	ЧH	60	0.90	*	480	ო	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-3	Wellhead Pump	Σ	75	đH	60	0.90	<del></del>	480	e	83.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-4	Future Wellhead Pump	Σ	75	₽	60	0.90	0	480	e	83.1	0.0	0.0	0.0	0.0	62.2	69.1
WP5-5	Future Wellhead Pump	Σ	75	đH	60	0.90	0	480	с	83.1	0.0	0.0	0.0	0.0	62.2	69.1
	Site Utilities/Heat Trace	⊢	45	kva	36	0.95	0.75	480	e	54.1	25.7	27.0	32.5	8.4	42.8	45.0
	Total					0.90		480	3		278.5	308.4	370.9	132.5	490.4	545.1

**BDR Engineering** 

Page 7 of 8

MCC-WP4	Wellpad 4 480V MCC		Buil	ding :	Wellpad	4 M C	с	Rev: 5	o			Date: 2	005-02-2	5		
			Name						~	<u>a</u>	May	k Operat	ing Load		Nan	neplate
Tag No.	Description	Type	Plate	Units	Actual	ЪF	ц	Volts P	h A	sdu	kW	kva	Amps	<b>KVAR</b>	kW	kva
K-607	VRU Compressor	>	150	ЧH	120	0.90	-	480	<u>ب</u>	36.2	99.5	110.5	132.9	48.2	124.3	138.1
K-601A	Air Compressor	Σ	ۍ	ЧH	4	0.75	~	480	e	6.6	3.3	4.4	5.3	2.9	4.1	5.5
K-601B	Air Compressor	Σ	S	ЧH	4	0.75	0	480	с С	6.6	0.0	0.0	0.0	0.0	4.1	5.5
P-501	Flare KO Drum Pump	Σ	S	ЧH	4	0.75	0.25	480	e	6.6	0.8	1.1	1.3	0.7	4.1	5.5
WP5-1	Wellhead Pump	Σ	75	Ч	60	0.90	-	480	ŝ	33.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-2	Wellhead Pump	Σ	75	ЧH	60	0.90	<del>.                                    </del>	480	e e	33.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-3	Wellhead Pump	Σ	75	ЧH	60	0.90	<del></del>	480	 ლ	33.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-4	Wellhead Pump	Σ	75	ЧH	60	0.90	<del></del>	480	ო	33.1	49.7	55.3	66.5	24.1	62.2	69.1
WP5-5	Wellhead Pump	Σ	75	ЧH	60	0.90	-	480	с С	33.1	49.7	55.3	66.5	24.1	62.2	69.1
	Site Utilities/Heat Trace	F	45	κν	36	0.95	0.75	480	ŝ	54.1	25.7	27.0	32.5	8.4	42.8	45.0
	Total					0.90		480	6		377.9	418.9	503.9	180.7	490.4	545.1

**BDR Engineering** 

Page 8 of 8



Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005



Page 68 of 70

## APPENDIX XX

MATERIAL BALANCE (OIL PROCESS)

# Deer Creek Energy Limited - Joslyn Creek Phase 2 Production Mass Balance - 12000 BPD (Nominal) Production Case

Stream Description		inlet to Group Separator	Vapour from Group Separator	Emulsion from Group Separator	Recycle Slop to FWKO	Diluent to FWKO	Iniet to FWKO	Produced Gas from FWKO	Produced Water from FWKO	Diluent to Treater	Inlet to Treater	Produced Gas from Treater	Dil-Bit from Treater	Produced Water from Treater	Produced Gas from Production Tank	Produced Gas from Prod. Gas	Condensed Water from Prod. Gas	Produced Gas from Prod. Water	Clean Oil to LACT	Diluent to LACT
Voncus Francisco		0.0005									1	İ			1 din	Oeparator	Separator	Гапк		
		0.0035	1.0000	0.0000	0.0000	0.0000	0.0008	1.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	1.0000	0.0000	1.0000	0.0000	0 0000
	1.0.0	165	165	165	85	11	159	159	159	11	143	143	143	143	69	45	45	85	69	11
	крас	950	950	950	1497	950	850	850	850	850	750	750	750	750	3	715	715	3	350	1100
I Otal Mass Flow	kg/h	269535	788	268747	757	16912	286416	254	163829	19761	142094	0	117852	24242	410	469	572	79	117442	31374
Hydrocarbon Liquid Phase																		<u> </u>		
Mass Flow	ka/h	80647	0	80647	375	16012	07953		202	10701		l								
Standard Volume Flow	m3/d	1914	- -	1914	<u>a</u>	475	2408		323	19761	117284	0	11/238	47	0	0	27	0	116734	31374
Density	ka/m3	918	-	918	946	850	860		0	200	2968		2967	1		-	1	-	2954	881
Viscosity	cP	217		21.7	76.1	7.6	10.2		609	859	843		843	843		-	758	-	903	859
Standard Density	ka/m3	10112		1011.2	987.2	854.6	075.2		10.3	7.0	7.8		7.8	7.8		-	0.8	-	53.1	7.6
API	1	83		83	11 7	33.0	12 4		9/0.0	804.0	948.3	·	948.3	948.3		-	784.6	-	948.3	854.6
	1						13.4		13.4	33.9	17.6		17.6	17.6			48.7	-	17.6	33.9
Aqueous Phase	I	1	i									[							ļ	
Mass Flow	kg/h	188100	0	188100	382	0	188310	0	163506	 0	24800		 £14	0440E						
Density	kg/m3	903	- 1	903	969		908		908		024		014	24190	UU	0	545	0	708	0
Standard Volume Flow	Sm3/d	4519	- 1	4519	9		4524		3928		508			504			990		978	
Actual Volume Flow	Am3/d	5000	-	5000	9	-	4977	-	4321		645		15	629			13 13		17	
Vanour Phase (wet basis)		<u> </u>																		
Mass Flow	ka/b	700	700														I	I	1	
Density	ka/m2	6.24	/00			·····	254	254		-		0	-	-	410	469	- 1	79		
Molecular Weight	кулпо	21.26	21.04		+.	·····	8.35	8.35				9.34	-	<u> </u>	1.63	9.93	- 1	1.12		-
Standard Gas Flow	Sm3/d	21065	21065		+.	·····	30.32	30.32				36.33		<u> </u>	45.98	31.34	- 1	32.98		
Actual Gas Flow	Am3/d	2981	2000		+-		4/55	4/55				0		<u> </u>	5075	8516	- 1	1357	- 1	-
mole fraction water	/ 4110/0	2301	0.6731			·····	129	/29				0		<u>-</u>	6029	1134	- 1	1693	- 1	
			0.0131			-	-	0.6463	-	-	-	0.5327	-	-	0.3027	0.0124	- T	0.5799	· · · · · · · · · · · · · · · · · · ·	



Joslyn Phase 2, SAGD Facility AFE # 002-0003-0002-0005-S1 Design Basis Memorandum Rev. 3

> BDR Project: 33500 Date: March 18, 2005



Page 69 of 70

## APPENDIX XXI

MATERIAL BALANCE (WATER)

### DEER CREEK ENERGY JOSLYN CREEK SAGD Project Design Parameters

	Steam System			
d	Steam Oil Ratio	2.5		
а	-100% steam to field	30000 bpd	= [	4770.2 t/d
b	-Steam Quality	97 %		
С	-LP Steam Sep. Recov.	0 %		
е	-HLS Steam Required	0 % of Inflow		
	Inlet Emulsion			
g	-Oil in	12000 bpd	=	1908 t/d
h	-Water retained in Reservoir	1500 bpd	=	239_t/d
I	-Produced Water in	28500 bpd	= [	4531.7 t/d
	P.W. to Deoiling			
j	-Sales Oli BS&W	0.5 %		
ĸ	-Solids Content	100 mg/l		
1		2000.0 mg/l		
m	-Temperature			
11 F	Specific Gravity - Water	0.900		
1	-Specific Gravity - Of	0.53		
	Oil Removal			
0	-Skim Tank Outlet	82.5 % Removal	=	376.7 mg/l
р	-Skim Oil Water Content	60 %		
q	-IGF Outlet	94.5 % Removal	=	21.3 mg/l
r	-IGF Overflow - Normal	2.5 % of IGF Inflow		
S	- Maximum	10 % of IGF Inflow		
ee	-Oil Removal Filter Outlet	97 % Removal	=	1.0 mg/l
	Solids Removal			
u	-Skim Tank Outlet	35 % Removal	=	65.5 mg/l
v	-Solids accum. in Tanks	61 t/y		0
W	-IGF Outlet	90 % Removal	=	1.0 mg/l
aa	-Oil Removal Filter Outlet	90 % Removal	=	1.0 mg/l
dd	-Oil Removal Filter Backwash	1.4 % of Filter Inflow		
	SourceWater			
bb	-Total Req'd	495 t/d		
cc	-Temperature	5 deg.C		
mm	-Total Utility Water	25 t/d		
nn	-Utility Water Recycle	50 % ofTotal		



Stre	eam:	1	2	3	4	5	6	1 7	8	9	10		
		Inlet Prod.	Misc Losses	Prod. Water	Prod. Water	Skim Tank	Skim Tank	IGF Unit	Oil Filters	Filter B/W	IGF Skimmings	Skim Tank Oil	Tot
Stream D	escription	Water from	To	from	to	Total	to	to	to	to	to	to	to
		Field	Process	Oil Treating	Surge Tank	Influent	IGF Unit	Filters	Deoil W Tank	SlopTank	Slop Tank	Slop Tank	Slop
Total Flow	t/day	5847.9	13.8	5847.9	6136.9	6136.9	6072.2	5918.4	5835.3	83.1	152.1	64.5	301
						1		1			102.1		
Water	t/day	5849.1	13.8	5835.3	6123.6	6123.6	6069.9	5918.1	5835.3	82.9	151.7	53.8	288
Bitumen	mg/L	2000	2000	2000	2000	2000	323	33	2	2248	11628	206612	452
	t/day	0.00	0.03	12.06	12.65	12.65	1.90	0.19	0.009	0.18	1.71	10.75	12.6
Solids	mg/L	100	100	100	100	100	66	7	1	431	2355	2	130
	t/day	0.58	0.00	0.58	0.61	0.61	0.40	0.04	0.00	0.04	0.36	0.0001	0.3
Temperature	deg C	85	85	85	85	85	85	85	85	85	85	85	85
Pressure	kPa(a)	260	260	260	260	190	190	160	450	450	190	160	190
Density	kg/m ³	968	968	968	968	968	968	968	968	968	968	968	968
Viscosity	ср	0.31	0.31	0.31	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32
Max. Flow	t/h	243.7	0.6	243.7	255.7	255.7	253.0	246.6	243.1	3.5	6.3	27	12.6
	Am ³ /h	251.7	0.6	251.7	264.2	264.2	261.4	254.8	251.2	3.6	6.5	2.8	13.0
	m3/d	6041.2	14.3	6041.2	6339.8	6339.8	6272.9	6114.0	6028.2	85.8	157.1	66.7	311.
Notes			Produced Gas										



SOURCE     Impact of the second seco	DEER CRE PHASE 2 JO COMMERCIA <u>Water</u> <u>Materia</u>	EK ENERGY OSLYN CREEK L SAGD Project <u>Systems</u> I Balance	15 from page 1 UTILITY 50M3/D 1	EVAP F	ED 16 6457.3 m3/D H20 85 °C 186 kPaG 15 PPM OIL 2454 PPM TDS 150 PPM HARDNESS 227 PPM SILICA URCE WATER EVAP	EVAP	ORATOR	23 CRYST. DIST. TO EVAP 18 EVAP WASTE TO CRYST. 62.8 m3/D H20 100 °C 9 kPaG 0 PPM OIL 19 EVAP VENT TO ATM BFW TO BOILER 20	221.2 m3/D H20 90 °C 186 kPaG 0 PPM OIL 254.0 m3/D H20 100 °C 356 kPaG 38 PPM OIL ? PPM TDS ? PPM TDS ? PPM TDS ? PPM SILICA	20 PPM TDS 0 PPM HARDNESS 0 PPM SILICA \$1.574 PPM TDS 2845 PPM HARDNESS 5723 PPM SILICA BOIL	CRYS CEN	CRYST. VENT TO ATM FALLIZER & TRIFUGE BOILER BD TO FIELD	19.7 m3/0 H20 95 °C 9 KPaG 0 PPM Oil 20.8 m3/0 H20 90 °C 9 KPaG 752 PPM Oil 190.9 m3/0 H20 263 °C 9 KPaG 0 PPM Oil 190.9 m3/0 H20 263 °C 9 PPM TOS 0 PPM CIL 9 PPM TDS 0 PPM HARDNESS 8.9 PPM SILICA 5952.8 m3/0 H20 263 °C	? PPM TDS ? PPM HAF ? PPM SLU YST. SOLIDS LANDFILL 250739 PPM 31779 PPM
Stream:     15     15     17     18     19     20     21     22     23    24     25       Stream Description     Evap Mate     Evap Mate     Evap Vent To 0     BFW     100% Steam     Bolier FD     Crystallizer     Crystallizer     Sorialisto       Total Flow     Uday     5835.3     6250.7     415.4     256.5     80.8     6147.2     5962.8     184.4     213.5     150     23.9       Water     Uday     5835.3     6250.7     415.4     256.2     80.8     6147.2     5962.8     184.4     213.5     150     24       Bitumen     mgL     2     1.5     0     39     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <th></th> <th></th> <th></th> <th>SOURCE</th> <th></th> <th>429.2 m3/D H20 65 °C 356 kPaG 0 PPM OIL 150 PPM HARDNESS 150 PPM HARDNESS 150 PPM HARDNESS</th> <th></th> <th>-</th> <th>6363.6 m3/D H20 85 °C 356 kPaG 0 PPM OIL 3 PPM TDS 0 PPM HARDNESS 0.27 PPM SILICA</th> <th></th> <th>21 100% STE TO FIELD</th> <th>AM</th> <th>0 PPM OIL 0 PPM TDS 0 PPM HARDNESS 0 PPM SILICA</th> <th></th>				SOURCE		429.2 m3/D H20 65 °C 356 kPaG 0 PPM OIL 150 PPM HARDNESS 150 PPM HARDNESS 150 PPM HARDNESS		-	6363.6 m3/D H20 85 °C 356 kPaG 0 PPM OIL 3 PPM TDS 0 PPM HARDNESS 0.27 PPM SILICA		21 100% STE TO FIELD	AM	0 PPM OIL 0 PPM TDS 0 PPM HARDNESS 0 PPM SILICA	
Stream Description     Decided PW     Evap Mote     Evap Waste     Evap Vent to	Stre	eam:	15	16	17	18	-   19	20	21	22	20			
Stream Description     to     Feed     to     to <thto< th="">     to     to     to<th></th><th></th><th>Deoiled PW</th><th>Evap</th><th>Source Water</th><th>Evap Waste</th><th>Evap Vent</th><th>BFW</th><th>100% Steam</th><th>Boiler BD</th><th>Crystallizor</th><th>24 Crystallizor</th><th>25</th><th></th></thto<>			Deoiled PW	Evap	Source Water	Evap Waste	Evap Vent	BFW	100% Steam	Boiler BD	Crystallizor	24 Crystallizor	25	
Evap     Evap     Crystallizer     Atm     Boiler     Field     Evap Feed     Atm     Boiler       Total Flow     Uday     5835.3     6250.7     415.4     256.5     60.8     614.7.2     5962.8     184.4     213.5     19.0     23.9       Water     Uday     5835.3     6250.7     415.4     256.2     60.8     614.7.2     5962.8     184.4     213.5     19.0     23.9       Water     Uday     0.009     0.009     0.00     0.0     0     0     0     762       Bitumen     mg/L     1     0     0     0     0     0     0     0     0.00     0.24       Solids     mg/L     1     0     0     0     0     0     0     0     0     0.00     0.24       Solids     mg/L     1     0     0     0     0     0     0     0     0     0     0     0     0     0.24     0.00     0.00     0.00	Stream D	escription	to	Feed	to	to	to	to	to	to	Distillate to	Vent to	Solida to	-
Total Flow     tiday     5835.3     6250.7     415.4     256.5     60.8     6147.2     5562.8     184.4     213.5     19.0     23.9       Water     iday     5835.3     6250.7     415.4     256.2     60.8     6147.2     5562.8     184.4     213.5     19.0     2.4       Bitumen     mg/L     2     1.5     0     38     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0<			Evap		Evap	Crystallizer	Atm	Boiler	Field	Field	Evap Feed	Atm	Landfill	
Water     Uday     5835.3     6260.7     415.4     256.2     60.8     6147.2     5962.8     184.4     213.5     19.0     2.4       Bitumen     mg/L     2     1.5     0     38     0     0     0     0     0     0     762       Uday     0.009     0.009     0.00     0.44     0.00     0.00     0.00     0.00     0.00     0.00     0.24       Solids     mg/L     1     0     0     0     0     0     0     0     0     0     0     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     263     263     90     95     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90     90	Total Flow	t/day	5835.3	6250.7	415.4	256.5	60.8	6147.2	5962.8	184.4	213.5	19.0	23.9	
Bitumen     mg/L     2     1.5     0     38     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     <	Water	t/day	5835.3	6250.7	415.4	256.2	60.8	6147.2	5962.8	184.4	213.5	19.0	2.4	-
Distribution     High     2     1.3     0     38     0     0     0     0     0     0     762       uday     0.009     0.009     0.000     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     <	Bitumon	mall		1 5	ļ									1
Jobs     Jobs <thjobs< th="">     Jobs     Jobs     <thj< td=""><td>Ditalilet</td><td>t/day</td><td></td><td></td><td></td><td>38</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>762</td><td></td></thj<></thjobs<>	Ditalilet	t/day				38	0	0	0	0	0	0	762	
Solids     mg/L     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0		buay	0.009	0.009	0.00	0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.24	
t/day     0.00     0.004     0.00     0.10     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     <	Solids	mg/L	1	0	0	0	0	0	0		50			_
Temperature     deg C     25     85     85     100     100     86     263     263     90     21/23       Pressure     kPa(a)     190     280     450     450     103     450     4897     4897     280     103     103       Density     kg/m³     968     968     968     1010     968     966     966     966     966     965     965     1150       Viscosity     cp     0.32     0.32     0.32     2.83     2.71     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     0.31     <		t/day	0.00	0.004	0.00	0.10	0.00	0.00	0.00	0.00	0.01	0.00	900000	-
Temperature     deg C     85     85     85     100     100     85     263     263     90     95     90       Pressure     kPa(a)     190     280     450     103     450     4897     4897     280     103     103       Density     kg/m³     968     968     1010     968     966     966     966     965     965     1150       Viscosity     cp     0.32     0.32     2.83     2.71     0.31     0.31     0.31     0.31       Max. Flow     t/h     243.1     260.4     17.3     10.7     2.5     256.1     248.4     7.7     8.9     0.8     1.0       Max. Flow     t/h     251.2     269.1     17.9     10.6     2.6     265.1     n/a     8.0     9.2     0.8     0.9       m3/d     6028.2     6457.3     429.2     254.0     62.8     6363.6     5962.8     190.9     221.2     19.7     20.8     Suspended solids come from precipita			ł							1	1 0.01	0.00	21.23	-
Pressure     kPa(a)     190     280     450     450     103     450     4897     4897     280     103     103       Density     kg/m³     968     968     968     1010     968     966     966     966     966     965     965     1150       Viscosity     cp     0.32     0.32     0.32     2.83     2.71     0.31     0.31     0.31     0.31     0.31       Max. Flow     t/h     243.1     260.4     17.3     10.7     2.5     256.1     248.4     7.7     8.9     0.8     1.0       Max. Flow     t/h     243.1     260.4     17.9     10.6     2.6     265.1     nra     8.0     9.2     0.8     1.0       Max. Flow     t/h     251.2     269.1     17.9     10.6     2.6     265.1     nra     8.0     9.2     0.8     0.9       m3/d     6028.2     6457.3     429.2     254.0     62.8     6363.6     5962.8     190.9 <td>Temperature</td> <td>deg C</td> <td>85</td> <td>85</td> <td>85</td> <td>100</td> <td>100</td> <td>85</td> <td>263</td> <td>263</td> <td>90</td> <td>95</td> <td>90</td> <td>-</td>	Temperature	deg C	85	85	85	100	100	85	263	263	90	95	90	-
Density     kg/m³     968     968     1010     968     966     966     966     965     965     1150       Viscosity     cp     0.32     0.32     0.32     2.83     2.71     0.31     0.31     0.31     0.31     0.31       Max. Flow     t/h     243.1     260.4     17.3     10.7     2.5     256.1     248.4     7.7     8.9     0.8     1.0       Max. Flow     t/h     251.2     269.1     17.9     10.6     2.6     266.1     n/a     8.0     9.2     0.8     0.9       m3/d     6028.2     6457.3     429.2     254.0     62.8     6363.6     5962.8     190.9     221.2     19.7     20.8       Vater content includes 8.3% TDS which precipitates out as a suspended solid in stream     Fixed density from 956 to 966 for volumetric     Fixed density from 956 to 966 for volumetric     Fixed density from 956 to 966     Fixed density for volumetric     Fixed density for volumetric     TDS in the water of stream	Pressure	kPa(a)	190	280	450	450	103	450	4897	4897	280	103	103	-
Density     kg/m²     968     968     966     966     966     966     965     965     1150       Viscosity     cp     0.32     0.32     0.32     2.83     2.71     0.31     0.31     0.31     0.31     0.31       Max. Flow     t/h     243.1     260.4     17.3     10.7     2.5     256.1     248.4     7.7     8.9     0.8     1.0       Max. Flow     t/h     251.2     269.1     17.9     10.6     2.6     266.1     n/a     8.0     9.2     0.8     0.9       m3/d     6028.2     6457.3     429.2     254.0     62.8     6363.6     5962.8     190.9     221.2     19.7     20.8       Water content includes 8.3% TDS which precipitates out solid in stream     Fixed density for volumetric     TDS in the water of stream														1
Viscosity     cp     0.32     0.32     0.32     2.83     2.71     0.31     0.31     0.31     0.31       Max. Flow     t/h     243.1     260.4     17.3     10.7     2.5     256.1     248.4     7.7     8.9     0.8     1.0       Max. Flow     t/h     251.2     269.1     17.9     10.6     2.6     265.1     n/a     8.0     9.2     0.8     0.9       m3/d     6028.2     6457.3     429.2     254.0     62.8     6363.6     5962.8     190.9     221.2     19.7     20.8       Water content includes 8.3% TDS which precipitates out as a suspended solid in stream     Fixed density from 956 to 966     Fixed density for w056 to 966     Fixed density for w056 to 966     TDS in the water of stream       Notes     25     0     0.9     0.9     0.9     0.8     0.9	Density	kg/m [°]	968	968	968	1010	968	966	966	966	965	965	1150	1
Image: Notes     Open of the second	Viscosity	- cn	0.32	0.32	0.32	202	2.74	0.01	<u> </u>					
Max. Flow     t/h     243.1     260.4     17.3     10.7     2.5     256.1     248.4     7.7     8.9     0.8     1.0       Am ³ /h     251.2     269.1     17.9     10.6     2.6     265.1     n/a     8.0     9.2     0.8     0.9       m3/d     6028.2     6457.3     429.2     254.0     62.8     6363.6     5962.8     190.9     221.2     19.7     20.8       Water content includes 8.3% TDS which precipitates out as a suspended solid in stream     Fixed density for volumetric     TDS in the water of stream				0.02	0.52	2.00	2.71	0.31		0.31	0.31	0.31		1
Am ³ /h     251.2     269.1     17.9     10.6     2.6     265.1     n/a     8.0     9.2     0.8     0.9       m3/d     6028.2     6457.3     429.2     254.0     62.8     6363.6     5962.8     190.9     221.2     19.7     20.8       Water content includes 8.3% TDS which precipitates out solid in stream     Water content includes 8.3% TDS which precipitates out solid in stream     Fixed density from 956 to 966 for volumetric     Fixed density from 956 to 966 for volumetric     Suspended solid in stream       Notes     25     murroses only     correct     correct </td <td>Max. Flow</td> <td>t/h</td> <td>243.1</td> <td>260.4</td> <td>17.3</td> <td>10.7</td> <td>2.5</td> <td>256.1</td> <td>248.4</td> <td>77</td> <td>89</td> <td>0.8</td> <td>10</td> <td>-</td>	Max. Flow	t/h	243.1	260.4	17.3	10.7	2.5	256.1	248.4	77	89	0.8	10	-
m3/d6028.26457.3429.2254.062.86363.65962.8190.9221.219.720.8NotesNotes		Am ³ /h	251.2	269.1	17.9	10.6	2.6	265.1	n/a	80	9.0	0.0	1.0	-
Water content includes 8.3% TDS which precipitates out as a suspended solid in stream Fixed density from 956 to 966 for volumetric Fixed density purposes only. Fixed density from 956 to 966 for volumetric Fixed density for volumetric Fi		m3/d	6028.2	6457.3	429.2	254.0	62.8	6363.6	5962.8	190.9	221.2	19.7	20.8	-
Indituded the reduction of the reduction	Notes					Water content includes 8.3% TDS which precipitates out as a suspended solid in stream 25		Fixed density from 956 to 966 for volumetric purposes only	Fixed to 966 for volumetric purposes only. CWE of 1000 is correct	Fixed density from 956 to 966 for volumetric purposes only			Suspended solids come from precipitating TDS in the water of stream	

? PPM TDS ? PPM HARDNESS ? PPM SILICA

250739 PPM TDS PPM HARDNESS 11779 PPM SILICA