Customer Name Colin Gunning Company **Gunning Services**

Location

Quote # 9024330

Reference

Valve PSV/Tag Number

SIZED ON 12/11/24 08:54 Please reference Quote Number on all corresponding Purchase Orders. Quote is only valid for 30 days from the sized on date. Page 1 of 3

Quote Revision Rev.: **Quote Contact**

MERCER VALVE CO., INC.® "AUTO SEAT TECHNOLOGY"®

	GAS/VAPOR	REQUIRED CAPACITY	Air	140 scfm	
	MOLECULAR WEIGHT		28.97	140 scrm 1	
	GAS COEFFICIENT	k-RATIO OF SPECIFIC HEATS	356.1	1.4	
	COMPRESSIBILITY FACTOR	K III III O O O O E E CINTO NE E CI	1.000	1.7	
	REQUIRED AREA	FLOW COEFFICIENT	0.0401 in ²	0.818	
	LIQUID 1	REQUIRED CAPACITY		333-3	
Fluid Data	SPECIFIC GRAVITY	DENSITY			
	VISCOSITY	VISCOSITY CORRECTION FACTOR			
	REQUIRED AREA	FLOW COEFFICIENT			
	LIQUID 2	REQUIRED CAPACITY			
	SPECIFIC GRAVITY	DENSITY			
	VISCOSITY	VISCOSITY CORRECTION FACTOR			
	REQUIRED AREA	FLOW COEFFICIENT			
	SUPERIMPOSED CONST BP	SUPERIMPOSED VARIABLE BP	0 psig	0 psig	
	BUILT-UP BP	TOTAL BACK PRESSURE	0 psig	0 psig	
	OPERATING TEMP	RELIEVING TEMPERATURE	70 °F	70 °F	
	OPERATING PRESSURE	ATMOSPHERIC PRESSURE		14.696 psia	
Process Conditions	SET PRESSURE	CDTP	200 psig		
	OVER PRESSURE	INLET PRESSURE LOSSES	20 psig / 10 %	0 psig / 0 %	
		FLOWING PRESSURE		234.696 psia	
	DISCHARGE COEFFICIENT AND AREAS	VALVE CERTIFICATION / DESIGN CODE	ASME Certified	ASME BPVC, SECTION XIII UV STAMPI	
	SYSTEM TYPE		Set on Air	Blocked Flow	
	-	Rupture Disk Correction	0.0401 in ²	1.0	
	SELECTED ORIFICE AREA		0.062 in ²	C ORIFICE	
	MAXIMUM CAPACITY O		216.3	3 scfm	
	MAXIMUM CAPACITY OF L				
	MAXIMUM CAPACITY OF LIQUID 2 AT OVER PRESS.		218 SCFM AIR		
	TAG CAPACITY	SINGLE OUTLET REACTION FORCE		8.84 lbf	
	DECIBEL LEVEL		95.06 dB @ 100 ft		
	INLET BASE / BODY N	1	· , ,	/ LCC Carbon Steel	
	SEAT	O-RINGS	(T) - 15% GLASS FILLED PTFE	(5) - BUNA N (LOW TEMP) 75 DURO	
Materials	SOUR SERVICE	TRIM MATERIALS	NO	(U) - 316 SS DISK & NOZZLE	
Waterials	ADJ SCREW	ADJ BUSHING	STNLS STL	STNLS STL	
	SPRING	DISK	17-7 PH STNLS STL	316 STNLS STL	
	NOZZLE MATERIAL	NOZZLE TYPE	316 STNLS STL	SEMI NOZZLE	
	CAP TYPE	INLET PIPE TAP			
		INLET PIPE TAP	(2) - OPEN LIFT LEVER	NO	
	VALVE SERIES	T	9100 SERIES CONVENTIONA	L SPRING OPERATED VALVE	
	FLANGED OR THREADED		Threaded		
	VALVE P/N:	REPAIR KIT P/N:	91-06CR2T06U5	1C2T5U1	
Valve Information	TEST GAG		NO		
	INLET AND OUTLET		(06) - ½" MNPT x 1" FNPT		
	CENTER TO FACE DIN	I IFNSIONS	$A = 3.202 \pm 0.062$ in. (81.3 ± 1.6 mm.)	B = 1.906 ± 0.062 in. (48.4 ± 1.6 mm	
		VALVE PRESS RANGE	-50°F to 225°F (-46°C to 107°C)	125psig to 230psig (861.8kPag to 1585.8kPa	
	Quantity	Lead Time (ARO)	1	120poig to 200poig (001.0ki ug to 1000.0ki u	
Pricing Information		Total Valve Price (US\$)	·		
Comments					

Mercer Valve Co., Inc. assumes no liability in any way whatsoever for any direct or indirect loss or damage through the application of this software. This sizing sheet is not for resale. All rights reserved. All trademarks, trade names and/or registered trademarks referred to in this sizing sheet are the property of their respective owners. See disclaimers sheet for further information. As per ASME code, Section VIII, Division 1, para. UG-125(a), the purchaser/user accepts all responsibility that the correct pressure relief valve is installed for their application. The purchase order for the pressure relief valve confirms the sizing calculations and material compatibility choices made by Mercer Valve are correct for the application.

Customer Name Colin Gunning Company **Gunning Services**

Location

Reference

Quote #

Valve PSV/Tag Number

9024330

SIZED ON 12/11/24 08:54 Page 2 of 3

	"AUTO SEAT TECHNOLOGY"®			
Variable Name	Symbol	Input Value	Equation Value	
Molecular Weight	М	28.97	28.97	
Ratio of Specific Heats	k	1.4	1.4	
Compressibility	Z	1	1	
Gas Required Flow	V	140 scfm	140 scfm	
Set Pressure	Pset	200 psig	200 psig	
			20 psig	
			0 psig	
			O psig	
			0 psig	
•		· =	0 psig	
Atmospheric Pressure	Patm	14.696 psia	14.696 psia	
Relieving Temperature	T1	70 °F	529.67 °R	
Rupture Disk Correction	Kc	1	1	
Noise Level Distance	d	100 ft	100 ft	
Gas Discharge Coefficient	KdGAS		0.818	
Outlet Diameter	Do		0.957 in	
Actual Valve Orifice Area	ATAG		0.062 in ²	
ASME Certified Flow Coefficient	t KdTag		0.818	
Symbol Equation			Equation Result	
	Molecular Weight Ratio of Specific Heats Compressibility Gas Required Flow Set Pressure Over Pressure Inlet Line Loss Variable Superimposed Back Pressure Constant Superimposed Back Pressure Atmospheric Pressure Atmospheric Pressure Relieving Temperature Rupture Disk Correction Noise Level Distance Gas Discharge Coefficient Outlet Diameter Actual Valve Orifice Area ASME Certified Flow Coefficient	Molecular Weight M Ratio of Specific Heats k Compressibility Z Gas Required Flow V Set Pressure Pset Over Pressure Pover Inlet Line Loss Ploss Variable Superimposed Back Pressure Pvs Constant Superimposed Back Pressure Pcs Built-up Back Pressure Pbu Atmospheric Pressure Patm Relieving Temperature T1 Rupture Disk Correction Kc Noise Level Distance d Gas Discharge Coefficient KdGAS Outlet Diameter Do Actual Valve Orifice Area ATAG ASME Certified Flow Coefficient KdTag	Variable Name Symbol Input Value Molecular Weight M 28.97 Ratio of Specific Heats k 1.4 Compressibility Z 1 Gas Required Flow V 140 scfm Set Pressure Pset 200 psig Over Pressure Pover 10 % Inlet Line Loss Ploss 0 % Variable Superimposed Back Pressure Pvs 0 psig Constant Superimposed Back Pressure Pcs 0 psig Built-up Back Pressure Pbu 0 psig Atmospheric Pressure Patm 14.696 psia Relieving Temperature T1 70 °F Rupture Disk Correction Kc 1 Noise Level Distance d 100 ft Gas Discharge Coefficient KdGAS Outlet Diameter Do Actual Valve Orifice Area ATAG ASME Certified Flow Coefficient KdTag	

7 1011		ion occinion narab	0.010
Calculations	Symbol	Equation	Equation Result
Flowing Pressure	P1	P1 = Pset + Pover - Ploss + Patm	234.7 psia
Total Back Pressure	P2	P2 = Pvs + Pcs + Pbu + Patm	14.696 psia
Pressure Ratio	PR	PR = P1 / P2	16
Critical Flow Nozzle Pressure	Pcf	Pcf = P1 * [2 / (k + 1)] ^ [k / (k - 1)]	123.986 psia
Sonic Flow Verification		Pcf < Pback ==> SONIC FLOW	
Gas Constant	С	C = 520 * { k * [2 / (k + 1)] ^ [(k + 1) / (k - 1)] } ^ 0.5	356.1
Gas Required Area	AGAS	AGAS = V * (T1 * Z * M) ^ 0.5 / (6.32 * C * KdGAS * P1 * Kc)	0.0401 in ²

Customer Name Colin Gunning Company

Location

9024330 Quote #

Reference

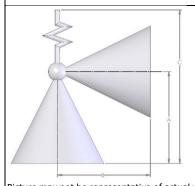
Valve PSV/Tag Number

Gunning Services

"AUTO SEAT TECHNOLOGY"®

SIZED ON 12/11/24 08:54 Page 3 of 3

		R	
MERCER	VALVE	CO.,	INC.


Meggan.Tuck

ENG-1047000

21-Nov-2024

5.08

Calculations	Symbol	Equation Equ	ation Result
Total Required Area Selected Orifice	Α	A = AGAS C ORIFICE	0.0401 in ² 0.062 in ²
Tag Flowing Pressure	P1TAG	P1TAG = Pset + 10% OverPress + Patm Std	234.7 psia
Tag Capacity	VTAG	VTAG = 18.331 * A * P1TAG * KdTAG	218 SCFM AIR
Maximum Gas Flow Rate Mass Flow	Vmax W	Vmax = 6.32 * C * KdGAS * P1 * Kc * A / (T1 * Z * M) ^ 0.5 W = Vmax * M / 6.32	216.25 scfm 991.26 lb/hr
Noise Level Calculations			
SoundPressureLevel	L	Calculated from Figure 18 in API 521	57.7 dB
Noise Level at 100 ft (30 m) Noise Level at distance d	L100 Ld	L100 = L + 10 * log (0.214967 * W * k *T1 / M) Ld = L100 - 20 * log (d / 100)	95.06 dB 95.06 dB
Reaction Forces			
Outlet Static Pressure	Po	Po = Max Allowable Over Pressure	14.696 psia
Outlet Area	Ao	Ao = $(\pi * Do ^2) / 4$	0.719 in ²
Gas Reaction Force for Open Discharge	FrGas	FrGas = W / 366 * { (k * T1) / [(k + 1) * M] } ^ 0.5 + [(Po - Patm) * Ao]	8.84 lbf

Picture may not be representative of actual valve

 $A = 3.202 \pm 0.062$ in. (81.3 ± 1.6 mm.)

B = 1.906 ± 0.062 in. $(48.4 \pm 1.6$ mm.)