Design Code Field Approval Appliance Approved

for

Dynamic Combustion

Owner / Operator: Birchill Canada Limited Partnership

Plant: Birchill HZ Brazr

Area:

Map Location: 01-04-043-13-W5

Tag Number:

Appliance Type: Line Heater

Appliance Serial No: NWP-08562-001-A

Report / Print Date: 08 Jan 2021 ENEFEN Project: NFN1805015

Attention

This Appliance is approved and may be operated.

This package contains a rating/approval plate that <u>must be attached</u> to the appliance and may be subject to an inspection by the Authority Having Jurisdiction.

ENEFEN Energy Efficiency Engineering Ltd.

82 52A ST • Delta, BC, V4M 2Z5 • +1-780-665-2863 **www.ENEFEN.com**

TABLE OF CONTENTS

REPORT SECTIONS IN THIS REPORT

Report Section

Report Cover

Table of Contents

Validation and Methodology

Certificate of Conformance

Project Information

Project Summary

Appliance Data

Inspection Photos

Proof Of Correction Photos

Rating Plate Information

Fuel Composition

Setpoints

Piping and Instrumentation Diagram

System Wiring Diagram

Validation and Methodology 20210108_1726 Page 1 of 2					
NFN Number	NFN Number NFN1805015 Product Type Design Code Field Approval				
Design Code	302C-A5-NW002	Project Status	Appliance Approved		
Field Evidence By	Travis Todd	Owner	Birchill Canada Limited Partnership	LOC	01-04-043-13-W5
Field Evidence	12 Jun 2018	Plant	Birchill HZ Brazr	Tag	
Report by	Christopher Pascua	Area		Serial	NWP-08562-001-A
P.Eng. Review by	Jozef Jachniak, P. Eng.	Contact	Garrett Umbach	Phone	250-263-4606

SCOPE

ENEFEN performs field inspection evaluations based on Canadian code requirements for the safety and suitability of one-of a-kind and limited run commercial and industrial gas-fired appliances and equipment that may be designed for installation at a specific site or assembled on-site. Field approvals include the application of an approval label on the appliance, an approval certificate, and a report in accordance with jurisdictional codes and requirements.

This evaluation has been completed under the Alberta Municipal Affairs Gas Code Regulation Variance VAR-GAS-03-19, which allows for a professional engineer registered with APEGA to provide an appliance approval as an alternative to the Certification Body or Inspection Body requirements under Section 3 of the Gas Code Regulation for gas-fired equipment used in process and utility applications at oil and gas production facilities. The Safety Codes Act supports an objective or performance based approach to compliance through the application of a variance under section 38. Evaluations comply with the Safety Codes Act and adopted regulations or include a risk based assessment related to the objectives of the Safety Codes Act to provide equivalent or greater safety with respect to persons, property and integrity of equipment. All components evaluated by a professional engineer include an assessment for conformance with industry-recognized published standards adopted in Canada, or in the absence of such standards with process and performance requirements, third-party test reports, and based on a history of demonstrated successful performance.

Inspection of an installed appliance includes the safety aspects of all combustion related equipment: fuel supply components; fuel train piping/components; fuel system design; fuel system and burner controls; process controls and permissives dependent on the combustion equipment. Issues found not conforming with the compulsory sections of the applicable codes given below are identified as Non-Conformances. If an issue is found that does not conform with a non-compulsory section, other codes and standards, or good engineering/industry practice, it is identified as an Observation. Such issue, although excluded from the scope of our approval, may create a potential safety hazard or affect the operation/performance of the appliance, and should be corrected.

Consulting the AHJ may be necessary to meet other jurisdictional requirements that are not in the scope of the gas-fired appliance field approval. Inspection does not include other design aspects, such as detailed compliance with the project or owner specifications, and the suitability of the equipment for any specific purpose, process conditions, or performance requirements.

APPLICABLE CODES

ENEFEN evaluates according to relevant clauses of the following codes:

CSA B149.1-15 - Natural gas and propane installation code

CSA B149.3-15 - Code for the field approval of fuel-related components on appliances and equipment

CSA STD C22.1-15 - Canadian Electrical Code, Part I Safety Standard for Electrical Installations

EVALUATION METHODS

Identify applicable standards

Travel to evaluation site

Obtain work permit

Establish communication with office

Perform safety check

Perform initial walkdown

Take overall photos of the evaluated product

Take inventory of components

Take photos of components

Check mechanical assembly methods

Check wiring methods

Check setpoints

Check permissives

Confirm non-conformances

Confirm observations

Confirm advise items

Finalize documentation / photos

Return equipment to "as-found" and "safe" state

Clean up evaluation site

Report any unsafe condition to responsible party

Report imminent danger condition to AHJ

Close work permit and advise responsible party of departure

Send initial evaluation report to client

Incorporate proof of corrections

Send final evaluation report to client

TOOLS

ASSET 00005 | Digital Camera | Olympus SP-620UZ | Serial Number Worn off | No calibration required

ASSET 00032 | Cell Phone | Apple iPhone MKQT2VC/A | Serial Number DNPRJ15VGRYG | No calibration required

ASSET 00036 | Bluetooth Headset | Jabra Stealth | Serial Number N/A | No calibration required

ASSET 00039 | Navigation System | Garmin Nuvi 265W | Serial Number 21D507110 | No calibration required

ASSET 00049 | Hand held engraver | Dremmel 8220 | Serial Number N/A | No calibration required

ASSET 00424 | Temporary Inspection Plates - Red, yellow, green, grey | Various | Serial Number N/A | No calibration required

ASSET 00489 | Tape measure short | Various | Serial Number N/A | No calibration required

OUR COMMITMENT TO QUALITY

We are committed to and passionate about the SAFETY, COMPLIANCE, HIGH EFFICIENCY and LOW ENVIRONMENTAL IMPACT of industrial and commercial energy systems. Our mission is to provide complete and high quality FIELD INSPECTIONS, ASSESSMENTS, and DESIGNS to bring you peace of mind combined with environmental and financial gains. Accredited by the Standards Council of Canada, and with staff engineers registered in a number of the Canadian provinces and territories, ENEFEN provides qualified and dependable services to a wide range of private industries.

Quality is imperative when working with fired appliances. ENEFEN has a quality management system which explains how we operate and what is expected of staff. It demonstrates to clients the level of quality and professionalism they can expect when they work with ENEFEN.

ENEFEN uses a unique project process and proprietary project tracking software to monitor project status and to store client reports. Flowcharts are available to clients to illustrate all steps that a project must follow, where client input is needed, and expected project deliverables. It is ENEFEN's goal with this process to take a systematic approach to all projects, avoid mistakes, maintain a high level of quality, and to exceed your expectations.

ENEFEN's inspection services are structured to ensure impartiality and to avoid any potential for external influences. Key staff undergo continuous surveillance to ensure their competency in meeting job requirements, however we have a formal resolution process to address any concerns or complaints you might have if we do not meet expectations.

We value your business. If you have any questions about our services or how we operate please contact us.

RESPONSIBLE PERSONNEL

These ENEFEN personnel are responsible for the results of our evaluation, and the reliability and accuracy of this report.

Report review and quality control is by: Jozef Jachniak, P. Eng. Signed on: 08 Jan 2021

Technical supervision of this inspection is by a registered Professional Engineer: Jozef Jachniak, P.Eng. Signed on: 08 Jan 2021

Copyright © ENEFEN Energy Efficiency Engineering Ltd. 2012-2020 All rights reserved.

No part of this report may be reproduced in any form whatsoever without the prior written permission of ENEFEN.

CERTIFICATE OF CONFORMANCE

ENEFEN Energy Efficiency Engineering Ltd.

780-665-2863

www.ENEFEN.com

FIELD APPROVAL NUMBER: NFN1805015 Rev 20210108_1726

REPORT DATE: 08 JAN 2021

PRODUCT: Design Code Field Approval

Prepared By Christopher Pascua

Client/Consultant Dynamic Combustion

Contact Garrett Umbach

Email gumbach@dynamiccombustion.c

a,kschatz@birchill.com

Tel 250-263-4606

Cell 250-263-7195

Owner/Operator Birchill Canada Limited

Partnership

Plant Birchill HZ Brazr

Area

Reviewed By Jozef Jachniak, P. Eng. **Elevation** 3750 ft | 1143 m

Jurisdiction Alberta Municipal Affairs

Program VAR-GAS-03-19

Process Gas Well

Function Indirect Fired Gas Heating

Appliance Line Heater

Appliance Tag

Map Location 01-04-043-13-W5 **Serial Number** NWP-08562-001-A

Appliance Approved

Project Category: Gas Appliance Field Approval

Validity: Under the authority given to Professional Engineers by Alberta Municipal Affairs as per the requirements of the Gas Code Regulation Variance VAR-GAS-03-19.

Conditions of Approval:

- The rating plate must be attached to the appliance
- Subject to local regulatory restrictions and applicable permits(eg. gas and electrical)
- The Appliance Maximum Fuel Input (HHV) on the rating plate must not be exceeded
- Alteration or relocation will void the approval (unless approved as movable appliance)
- The Authority Having Jurisdiction (AHJ) may choose to examine the appliance, rating plate or report.

I hereby attest that this installed appliance meets all of the jurisdictional requirements and is approved as inspected according to this project report.

APPROVED BY: Jozef Jachniak, P. Eng.

APPROVED DATE: 08 Jan 2021

PERMIT TO PRACTICE: P08977

PROJECT INFORMATION

20210108_1726

ENEFEN Number NFN1805015

Product Design Code Field Approval

Design code 302C-A5-NW002

Project description

Jurisdiction Alberta Municipal Affairs

Program VAR-GAS-03-19

Appliance Identification

Process Gas Well

Function Indirect Fired Gas Heating

Type Line Heater

Tag Number

Name

Map Location 01-04-043-13-W5

Plant Birchill HZ Brazr

Area

 Serial Number
 NWP-08562-001-A

 Site elevation
 3750 ft | 1143 m

CRN number Alberta number

Appliance Information

Manufacturer NWP Industries Inc.

Project number

Built where

Date built 2012

Model number

Installed by Dynamic Combustion

Project number 2018-033 New or upgrade Upgrade

Date

Client Information

Project number 2018-033

Branch/plant Fort St. John Office

Department/area

Contact name Garrett Umbach

Contact email gumbach@dynamiccombustion.ca,kschatz@birchill.co

 Contact phone
 250-263-4606
 Extension

 Contact cell
 250-263-7195
 Fax

Owner/Operator Information

Company name Birchill Canada Limited Partnership

Project number

Branch/plant Birchill HZ Brazr

Department/area

Contact name Kevin Schatz

Contact email kschatz@birchill.com

Contact phone 403-815-3801 Extension
Contact cell Fax

Consultant Information

Company name N/A

Project number

Branch/plant Department/area

Contact name

_ . . .

Contact email

Contact phone Extension

Contact cell Fax

	PROJECT SUMMARY 20210108_1726 Page 1 of 1					
NFN Number	NFN1805015	Product Type	Design Code Field Approval			
Design Code	302C-A5-NW002	Project Status	Appliance Approved			
Field Evidence By	Travis Todd	Owner	Birchill Canada Limited Partnership	LOC	01-04-043-13-W5	
Field Evidence	12 Jun 2018	Plant	Birchill HZ Brazr	Tag		
Report by	Christopher Pascua	Area		Serial	NWP-08562-001-A	
P.Eng. Review by	Jozef Jachniak, P. Eng.	Contact	Garrett Umbach	Phone	250-263-4606	

CODE COMPLIANCE SUMMARY

Fuel train layout compliant? Fuel train sizing compliant? Yes Fuel train installation compliant? Yes Burner design compliant? Yes **Burner installation compliant?** Yes BMS FSG design compliant? Yes **BMS FSG installation compliant?** Yes Permissives design compliant? Yes Permissives installation compliant? Yes Controls design compliant? Controls installation compliant? Yes Appliance design compliant? Yes Appliance installation compliant? Yes Flammable gas venting compliant? Yes Stack installation compliant? Yes All components certified or approved? Yes All technical documentation complete? Yes System Compliant with CSA B149.3?

	cyclom compilation con 2 i local	
OBSERVATION	Response is not mandatory but may be provided to record in the report	
Fuel Gas PSHH Setpoint	120.7 kPag 17.5 psig Accepted based on appliance application and	Observation
	high excess air in stack, there is no safety concern with the pressure high-high setpoint.	

		APPL	IANCE DATA	20210108	_1726	
NFN Number	NFN1805015	Product Type	Product Type Design Code Field Approval			
Design Code	302C-A5-NW002	Project Status	Appliand	e Approve	ed .	
Field Evidence By	Travis Todd	Owner	Birchill Canada Limited Partnership	LOC	01-04-0	43-13-W5
Field Evidence	12 Jun 2018	Plant	Birchill HZ Brazr	Tag		
Prepared By	Christopher Pascua	Area		Serial	NWP-0	8562-001-A
Reviewed By	Jozef Jachniak, P. Eng.	Contact	Garrett Umbach	Phone	250-263	3-4606
28	LOCATION INFORMATION	l				
urner Location		Outdoor				Noted
uel Train Location		Inside Enclosure				Noted
ontrol Panel Locat	ion	Outdoor				Noted
uilding or Enclosu	re Features	Building/Enclosur	e heated by uninsulated vessel.			Noted
ppliance Ambient	Temperature Rating	-29°C to 40°C -	20°F to 104°F			Noted
61	PROCESS INFORMATION					
rocess		Gas Well				Noted
rocess Cycle perce	ent	100 %				Noted
nnual Operation P	ercent	100 %				Noted
ppliance Function		Indirect Fired Gas	s Heating			Noted
Appliance Type		Line Heater	Line Heater			Noted
rocess Fluid		Natural Gas				Noted
ath Fluid		Glycol				Noted
62	APPLIANCE INFORMATIO	N				
rocess Duty		1.94 GJ/h 1.84	MM Btuh			Noted
ppliance Efficiency	/ HHV	77.1 %				Noted
uel Total Input (H	HV)	2.52 GJ/h 2.39	MM Btuh			Noted
ame Safeguard S	ystem Logic Type	Single Burner FS0	3			Noted
umber of Burners		2				Noted
urner Fuel Input (HHV)	1.261 GJ/h 1.19	95 MM Btuh			Noted
lain Burner Max. [Design Pressure	83 kPag 12.0 ps	sig			Noted
ain Burner Min. D	esign Pressure	6.9 kPag 1.0 ps	ig			Noted
urner Turndown		3.46:1				Noted
ilot Configuration		Separate premix	pilot			Noted
ilot Type		Intermittent / Co	ntinuous			Noted
lot Fuel Input (H	HV)	0.03 GJ/h 0.03	MM Btuh			Noted
lot Pressure		48 kPag 7.0 psi	g			Noted
nition Type		Electric ignition fr	rom BMS			Noted
nstrument Control	Method	Electric / Pneuma	atic			Noted
it a Pressure Ves	sel	No. Process Coils	are pressurized but heater shell is not			Noted
RN Number		Process Coils ~ P	9417.213			Noted

APPLIANCE DATA		Page 2 of 9
PRIMARY FUEL SUPPLY		
Primary Fuel Type	Produced Gas	Noted
Is Primary Fuel Sweet	Sweet < 5ppm H2S	Noted
Is Primary Fuel Dry	Wet	Noted
Primary Fuel Source	Gas well	Noted
Primary Fuel Composition Known	Unknown. Estimated to have similar heating value to standard sales gas composition.	Noted
Primary Fuel Inlet Pressure	689 kPag 100.0 psig	Noted
Primary Fuel Odorization	Not Odorized	Noted
Primary Fuel Scrubber	Mechanical Scrubber	Noted
Primary Fuel Filter	Y-Strainer installed upstream of the main fuel train PRV.	Noted
Primary Fuel Overpressure Protection	Upstream PSV protects the main PRV.	Noted
Primary Fuel Overpressure Protection Device (OPPD)	Mercer safety relief valve	Noted
Primary Fuel OPPD Setpoint	1034 kPag 150.0 psig	Noted
Primary Fuel Preheat	Preheat through bath fluid	Noted
Line Pressure Control Device	Fisher 627 \sim 3/16in. orifice \sim 70-150psi spring \sim 1000psi max inlet \sim -50°C	Noted
Line Pressure Control Device Setpoint	689 kPag 100.0 psig	Noted
164 SECONDARY FUEL SUPPLY		
Secondary Fuel Type	Not approved for secondary fuel use	Noted
165 PILOT FUEL SUPPLY		
Pilot Fuel Type	Produced Gas	Noted
s Pilot Fuel Sweet	Sweet < 5ppm H2S	Noted
s Pilot Fuel Dry	Wet	Noted
Pilot Fuel Source	Same as main fuel train	Noted
Pilot Fuel Composition Known	Unknown. Estimated to have similar heating value to standard sales gas composition.	Noted
Pilot Fuel Inlet Pressure	689 kPag 100.0 psig	Noted
Pilot Fuel Odorization	Not Odorized	Noted
Pilot Fuel Scrubber	Same as main fuel train	Noted
Pilot Fuel Filter	Y-Strainer in the main fuel train upstream of the pilot take-off.	Noted
Pilot Fuel Overpressure Protection Device OPPD)	Upstream PSV protects the pilot PRV.	Noted
Pilot Fuel OPPD Setpoint	1034 kPag 150.0 psig	Noted

APPLIANCE DATA		Page 3 of 9
170 INSTRUMENT GAS INFORMA	ATION	
Instrument Gas Type	Produced Gas	Noted
Is Instrument Gas Sweet	Sweet	Noted
Is Instrument Gas Dry	Wet	Noted
Instrument Gas Source	Upstream of main fuel train regulator.	Noted
Instrument Gas Inlet Pressure	689 kPag 100.0 psig	Noted
Instrument Gas Filter	Integral to instrument pressure regulator.	Noted
Instrument Gas Overpressure Protection Device (OPPD)	PSV integral to instrument gas PRV	Noted
Instrument Gas PRV for FCV	Fisher 67CFR ~ 0-35psi spring ~ 250psi max inlet ~ -29°C	Noted
Instrument Gas PRV for FCV Setpoint	152 kPag 22.0 psig	Noted
Instrument Gas for FCV Minimum Pressure	103 kPag 15 psig	Noted
Instrument Gas for FCV Maximum Pressure	207 kPag 30 psig	Noted
Instrument Gas PRV for SSV	Fisher 67CFR \sim 0-125psi spring \sim 250psi max inlet \sim -50°C	Noted
Instrument Gas PRV for SSV Setpoint	517 kPag 75.0 psig	Noted
Instrument Gas for SSV Minimum Pressure	483 kPag 70 psig	Noted
Instrument Gas for SSV Maximum Pressure	827 kPag 120 psig	Noted
172 ELECTRICAL INFORMATION		
Electrical Area Classification at Burner	Non-Hazardous	Noted
Electrical Area Classification at Fuel Train	Zone 1	Noted
Electrical Area Classification at Control Panel	Zone 2	Noted
Available Primary Main Power	120 VAC / 60 Hz	Noted
Available Primary Main Power Source	Utility / Grid	Noted
Primary Main Power Amps	15.0 amps	Noted
Available Primary Control Power	24 VDC	Noted
Available Primary Control Power Source	TEG	Noted
Primary Control Power Amps	4.0 amps	Noted
Hazardous Area Electric Seals Installed	At the building/enclosure wall (ie. Zone 1/2 boundary), At the windbox (ie. Zone 2 / Non-hazardous boundary)	Noted
Are All Required Hazardous Area Electric Seals Installed	All Hazardous Area Electric Seals are properly installed.	Noted
Wiring Method Inside the Building \ Enclosure	Explosion-proof Junction Boxes, Rigid Conduit	Noted
181 APPLIANCE SHELL		
Shell Type	Horizontal with expansion tank above	Noted
Shell OD	1829 mm 72.00 in	Noted
Shell Length / Height	7 m 24.00 ft	Noted
Shell Insulation Scope	Fully insulated without end plates	Noted
Shell Insulation Thickness	51 mm 2.00 in	Noted

APPLIANCE DATA		Page 4 of 9
182 HEATER FIRETUBE		
Number of Firetubes	1	Noted
Firetube Type	Horizontal U-tube with constant diameter.	Noted
Number of Passes	2	Noted
Firetube OD	610 mm 24.00 in	Noted
Immersed Length of Assembly	7 m 22.00 ft	Noted
Firetube Surface Area	30 m ² 318 ft ²	Noted
Firetube Nominal Process Rating	3.35 GJ/h 3.18 MM Btuh	Noted
Firetube Design Process Rating	1.94 GJ/h 1.84 MM Btuh	Noted
Firetube Design Heat Flux	65.87 MJh/m ² 5800 Btuh/ft ²	Noted
Firetube Achievable Efficiency (HHV)	77.4 %	Noted
Firetube Appliance Efficiency HHV	77.1 %	Noted
Firetube Condition	Firetube acceptable	Noted
183 APPLIANCE STACK		
Stack Type	Same diameter as firetube	Noted
Stack OD	610 mm 24.00 in	Noted
Stack Height	5 m 17.00 ft	Noted
Stack Wind Shroud	None	Noted
Stack Cap	None	Noted
Stack Damper	None	Noted
Stack Insulation Scope	None	Noted
Drain Port Plug	Stack drain port not installed.	Noted
Stack Cleanout Port	Reduced-size horizontal port	Noted
Stack Sampling Port	Drilled hole with plug.	Noted
184 APPLIANCE WINDBOX		
Windbox Manufacturer	Wenco Energy Corp.	Noted
Windbox Serial Number	1112-622	Noted
Windbox Material	Aluminum Welded	Noted
Windbox Type	Round hinged door w/bolts	Noted
Wind Box Gasket	All required gaskets are installed and in good condition.	Noted
Windbox ID	1067 mm 42.00 in	Noted
Windbox Depth	610 mm 24.00 in	Noted
Windbox Volume	0.545 m³ 19.242 ft³	Noted
Windbox Size Factor	0.216 m³/GJh 8.05 ft³/MM Btuh	Noted
Windbox Gas CL to Liquid	102 cm 40 in	Noted
Windbox Gas CL to Burner Tip	122 cm 48 in	Noted
Burner tip insertion depth	20 cm 8 in	Noted
Burner Access	Hinged front door with bolts	Noted
Windbox Air Adjustment	None	Noted
Windbox Viewport	1 inch glass peep sight	Noted
Is the Ignition Transformer Module mounted correctly	Yes.	Noted

APPLIANCE DAT	A	Page 5 of 9
185 APPLIANCE FLAME CELI	-	
Number of Flame Cells Per Windbox	1	Noted
Flame Cell Material	Aluminum	Noted
Flame Cell Location	Front	Noted
Flame Cell OD	1067 mm 42.00 in	Noted
Flame Cell ID	203 mm 8.00 in	Noted
Total Flame Cell Surface Area	0.86 m ² 0.00 ft ²	Noted
Flame Cell Size Factor	0.34 m ² /GJh 0.00 ft ² /MM Btuh	Noted
186 MAIN BURNER		
Number of Burners per Appliance	2	Noted
Are All Main Burners Identical	Yes.	Noted
Burner Make	ACL	Noted
Burner Size	2 in 51 mm	Noted
Burner Mixer	ACL M200	Noted
Main Burner Orifice Size	#2 5.61 mm 0.22 in	Noted
Burner Sleeve	ACL venturi burner barrel	Noted
Burner Nozzle	ACL Optimizer Nozzle (with air spinner)	Noted
Burner Fuel Input Capacity (HHV)	2.638 GJ/h 2.500 MM Btuh	Noted
Burner Capacity Utilization	48 %	Noted
187 PILOT BURNER		
Pilot Make	ACL	Noted
Pilot Size	1/2 in 12.7mm 0.50in	Noted
Pilot Mixer	ACL M50	Noted
Pilot Burner Orifice Size	#65 0.8890mm 0.0350in	Noted
Pilot Sleeve	Straight Pipe Nipple	Noted
Pilot Nozzle	ACL M50 pilot assembly	Noted
Pilot Location	Between Burners at 3:00 and 9:00	Noted
188 COMBUSTION AIR		
Combustion Air Source	Natural Draft	Noted
Combustion Air Preheat	No Preheat	Noted
Primary Air Control Type	At burner mixer with air shutter	Noted
Secondary Air Control Type	ACL spinner with adjustable louvers	Noted

APPLIANCE DATA		Page 6 of 9
189 APPLIANCE PERMISSIVES		
Liquid Low Level LSLL Location	In external bridle.	Noted
Isolation Valves Installed on LSLL	1/4 turn isolation valve locked and tagged.	Noted
Liquid Low Level LSLL Type	Single point electric float	Noted
Liquid Low Level LSLL Make	SOR 1510 ending with CS float switch \sim Class I-Div.1 \sim -40°C to 125°C	Noted
Level Switch Orientation	Manual override button points down (enabled).	Noted
Process TSHH Location	In the main tank	Noted
Process TSHH Type	Temperature switch to BMS.	Noted
Process TSHH Make	CCS 6900TE-series ~ Class I-Div.1 ~ -40°C	Noted
Process TSHH Setpoint	90 °C 194 °F	Noted
Process TSHH Separate From Process Controller	Yes.	Noted
Fuel Gas PSLL Location	Upstream of SSVs	Noted
- uel Gas PSLL Type	Electric pressure switch	Noted
Fuel Gas PSLL Make	CCS 6900GZE12 \sim 1-18psig range (2psi deadband) \sim Class I-Div.1 \sim -40°C	Noted
Fuel Gas PSLL Setpoint	41.4 kPag 6.0 psig	Noted
uel Gas PSHH Location	Downstream of SSVs and upstream of FCV	Noted
uel Gas PSHH Type	Electric pressure switch	Noted
uel Gas PSHH Make	CCS 6900GZE12 ~ 3-20psig range ~ Class I-Div.1 ~ -40°C	Noted
Fuel Gas PSHH Setpoint	120.7 kPag 17.5 psig Accepted based on appliance application and high excess air in stack, there is no safety concern with the pressure high-high setpoint.	Observation
Isolation Valves Installed on High Pressure Shutdown Device	1/4 turn isolation valve locked and tagged.	Noted
solation Valves Installed on Low Pressure Shutdown Device	1/4 turn isolation valve locked and tagged.	Noted
Plant ESD Connected	Yes.	Noted
190 COMBUSTION SAFETY CONT	ROL	
Combustion Safety Control Type	Prepackaged / CSA Certified.	Noted
Combustion Safety Control Make	ACL 5500 ~ CSA22.2 No.199-M89 ~ Class I-Div.2 ~ -40°C	Noted
lame Sensor	Flame Rod	Noted
Remote BMS Connections	Interlocks to plant control system, ESD, Status	Noted
BMS Serial Number	55-12/24-092712-10	Noted
BMS Temperature Input	External temperature switch (TSHH).	Noted
TSHH Interlocked with BMS	Yes.	Noted

ACL Ignition Module \sim CSA certified \sim Class I-Div.2 \sim -40°C

Noted

Noted

Yes.

BMS has a pre-purge function

Ignition Transformer Make

APPLIANCE DATA		
192 APPLIANCE CONTROL SYSTE	EM .	
Process Control Element Location	TE in the main tank	Noted
Process Controller Type	Modulating - Pneumatic	Noted
Controller Temperature Setpoint	45 °C 113 °F	Noted
Bath Fluid Temperature	40.0 °C 104.0 °F	Noted
Process Controller Make	Kimray HT12 ∼ 5-30psi pneumatic ∼ -34°C to 399°C	Noted
TSH Type	Pneumatic thermostat.	Noted
Fuel FCV Make	Fisher 119 \sim 5-35psig actuation \sim 35-150psig instrument gas supply \sim 150psig max \sim -29°C	Noted
FCV 3-way Solenoid	Not installed.	Noted
FCV Speed Control Valve	SMC NAS4000-N02	Noted
Fuel Low Fire Start	Pneumatic SSV with speed control valve.	Noted
Fuel Minimum Fire Stop	Not installed.	Noted
Low Fire Start For System Over 1 MM Btuh	Yes.	Noted
Fuel Measurement Method	None	Noted
193 MAIN FUEL TRAIN		
Main Fuel Manual Shut-off Valve	MAS G2E-series ball valve (1/4-2in. size)(SS) \sim CGA 3.16 \sim 125psig max \sim -40°C	Noted
Main Fuel Train Filter	Y-strainer installed upstream of main fuel train PRV and pilot take-off.	Noted
Is Appliance Manual Fuel Shut-off Easily Accessible	Yes.	Noted
Main Fuel Pressure Control Device Configuration	Single Pressure Regulator.	Noted
Appliance Main Fuel Pressure Control Device	BelGas R627 \sim 3/8in. orifice \sim 5-20psig spring \sim 300psig max inlet \sim -29°C \sim with internal relief	Noted
Appliance Main Fuel Pressure Control Device Setpoint	82.7 kPag 12.0 psig	Noted
Appliance Fuel Overpressure Protection	Two regulators in series with setpoints below the lowest rated component.	Noted
Main Safety Shut-off Valve Configuration	Single SSV with proof of closure switch	Noted
Main Safety Shut-off Valve Type	Electro-pneumatic valve(s)	Noted
Main Safety Shut-off Valve Make (single valve)	Fossil (FPS) 9650-series \sim CSA 6.5-C/I \sim 70-120psig actuation \sim 200psig max \sim -45°C	Noted
Main SSV(s) Slow Opening	Yes. Using speed control valve. SMC NAS4000-N02.	Noted
Main Burner Test Firing Valve	MAS G2E-series ball valve (1/4-2in. size)(SS) \sim CGA 3.16 \sim 125psig max \sim -40°C	Noted
Are pressure indicator locations adequate	Yes.	Noted
Are pressure indicator ranges adequate	Yes.	Noted
Are pressure test points adequate	Yes.	Noted
Main Fuel Train Piping	Carbon steel piping	Noted
Sufficient unions / flanges for maintenance	Yes.	Noted
Is Piping Adequately supported	Yes.	Noted

APPLIANCE DATA		Page 8 of 9
194 PILOT FUEL TRAIN		
Pilot Fuel Take-off	From between main fuel train filter and regulator.	Noted
Pilot Fuel Manual Shut-Off Valve	MAS G2E-series ball valve - 1/4-2in. (SS) \sim CGA 3.16 \sim 125psig max \sim -40°C	Noted
Pilot Pressure Control Device Configuration	Single Pressure Regulator.	Noted
Pilot Pressure Control Device	Fisher 67CFR ~ 0-35psi spring ~ 250psi max inlet ~ -29°C	Noted
Pilot Pressure Control Device Setpoint	48.3 kPag 7.0 psig	Noted
Pilot Overpressure Protection	PSV integral to pilot PRV.	Noted
Pilot OPPD Setpoint	69 kPag 10.0 psig	Noted
ilot SSV Configuration	Single SSV	Noted
Pilot SSV Type	Electric Solenoid valve(s)	Noted
Pilot SSV Make (single valve)	ASCO HV426716002 24VDC \sim CSA 6.5-C/I \sim Class I-Div.1 \sim 50psig MOPD \sim 100psig SWP \sim -40°C	Noted
Pilot Test Firing Valve	MAS G2E-series ball valve (1/4-2in. size)(SS) \sim CGA 3.16 \sim 125psig max \sim -40°C	Noted
Are pressure indicator locations adequate	Yes.	Noted
Are pressure indicator ranges adequate	Yes.	Noted
Are pressure test points adequate	Yes.	Noted
Pilot Fuel Train Piping	Carbon steel piping and stainless steel tubing	Noted
Sufficient unions / flanges for maintenance	Yes.	Noted
s Piping Adequately supported	Yes. Pilot fuel train piping outside of the enclosure is tied with the main fuel train piping for support.	Accepted
224 INSTALLATION - FLAMMABL	E GAS VENTING	
ent Piping Materials	Stainless steel tubing	Noted
s Sour Gas Vented	No	Noted
are Vent Line Connection Sizes to Devices Maintained	Yes	Noted
Are Combined Vents Increased in Size	Combined vents are properly installed.	Noted
Are There Any Vent Lines Under The Building / Enclosure	No	Noted
Are Vent Terminations Away From Building Openings and Air Intakes	Yes	Noted
are Any Vent Line Terminations Close to Operating Personnel	No	Noted
are Vent Terminations Equipped With Screens	All required screens are properly installed.	Noted
re Vent Line Terminations Protected From Vater Entry	Yes	Noted
s Piping Adequately Supported	Yes.	Noted
Fuel Supply Line Pressure Control Device Properly Vented	Yes	Noted
Fuel Supply Overpressure Protection Device Properly Vented	Yes	Noted

APPLIANCE DAT	ΓΑ	Page 9 of 9
261 STACK READINGS		
Source of Combustion Readings	Installer	Noted
Date of Combustion Readings	05 Apr 2018	Noted
Main Burner Pressure	83 kPag 12.0 psig	Noted
Process Temperature	45 °C 113 °F	Noted
Ambient Temperature	4 °C 39 °F	Noted
Stack Temperature	338 °C 640 °F	Noted
Stack Oxygen	5.7 %	Noted
Stack CO	0 ppm	Noted
Stack NOx	56 ppm	Noted
Excess Air	33.3 %	Noted
Draft Pressure	-0.161 in.WC	Noted
Efficiency (HHV)	77.1 %	Noted
Stack Temperature Notes	High. Stack temp between 350-650°F/195-360°C above bath temp. May result in lower efficiency.	Noted
Excess Air Notes	O2 is in the high range of $5.5-8.0\%$ and may result in lower efficiency.	Noted
Carbon Monoxide Notes	Less than 50 ppm is ideal.	Noted
NOx Notes	High but typical for this type of burner, in the range of 50-100 ppm (3% O2 basis).	Noted
Efficiency Notes	Efficiency is acceptable in the range of 72 to 78%.	Noted

END OF REPORT SECTION

FIELD INSPECTION PHOTOS 20210108_1726

Company

Plant

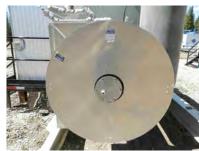
Appliance -

Tag Number

LOC 01-04-043-13-W5 Serial No. NWP-08562-001-A

Lease sign

Appliance rating plate


Birchill Canada Limited Partnership

Birchill HZ Brazr

Windbox name plate

Windbox - overall view

Burner Management System - BMS

BMS Serial Number

BMS wiring

Overall view of fuel train

Upstream overpressure protection - PSV

Line Pressure Regulator

Manual shut-off valve and Y-strainer

Main fuel train pressure regulator - PRV

PSLL calibration tag

PSLL - Low pressure shutdown

Isolation valve on pressure switch (PSLL)

Main fuel train safety shut-off valve - SSV

Instrument gas regulator (PRV) to SSV

Speed control valve for SSV

FCV - Main flow control valve

Instrument gas regulator (PRV) to FCV

TC - pneumatic process temperature control

Speed control valve for FCV

PSHH - High pressure shutdown

PSHH calibration tag

Main burner test firing valve

Pilot manual fuel shut-off valve

Pilot pressure regulator - PRV

Pilot safety shut-off valve - SSV

Pilot fuel train not supported (NON-CONFORMANCE)

Pilot fuel train outside enclosure not supported (NON-CONFORMANCE)

Pilot burner test firing valve

Main burner and pilot close-up

LSLL - Low bath fluid shutdown

TSHH - High temperature shutdown

Stack

Stack sampling port

Vent lines

Vent lines

Vent line terminations, Vent lines

Vent lines

Vent line terminations

Hazardous area conduit seal at the wall

ENEFEN temporary Field Inspection Plate

PROOF OF CORRECTIONS PHOTOS 20210108_1726

Appliance -

Tag Number

Map Location 01-04-043-13-W5 Serial No. NWP-08562-001-A

Pilot fuel train tied with main fuel train for support Pilot fuel train tied with main fuel train for support

Owner—

Company Birchill Canada Limited Partnership

Plant Birchill HZ Brazr

Area

Pilot fuel train tied with main fuel train for support

RATING PLATE 20210108_1726 Page 1 of 1						
NFN Number	NFN1805015	Product Type	e Design Code Field Approval			
Design Code	302C-A5-NW002	Project Status	Appliance Approved			
Field Evidence By	Travis Todd	Owner	Birchill Canada Limited Partnership	LOC	01-04-043-13-W5	
Field Evidence	12 Jun 2018	Plant	Birchill HZ Brazr	Tag		
Report by	Christopher Pascua	Area		Serial	NWP-08562-001-A	
P.Eng. Review by	Jozef Jachniak, P. Eng.	Contact	Garrett Umbach	Phone	250-263-4606	

FIRED APPLIANCE RATING PLATE

Dynamic Combustion

RR1 Site 6 Compartment 14, Fort St. John, BC V1J 4M6

Appliance Manufacturer

Built Date Serial Number

New Install or Upgrade **Installation Company** Installation Project Number

Appliance Type Map Location

Elevation Above Sea Level

Appliance Temperature Rating

Primary Fuel Type Primary Fuel Quality Primary Fuel Inlet Pressure Primary Fuel Protected Pressure

Secondary Fuel Type Pilot Fuel Type Pilot Fuel Quality

Pilot Fuel Inlet Pressure Appliance Max Fuel Input (HHV)

Number of Burners per Appliance Max. Fuel Gas Burner Pressure Min. Fuel Gas Burner Pressure Pilot Fuel Gas Burner Pressure

Instrument Gas Type

Instrument Gas Minimum Pressure Electrical Area Class At Burner

Electrical Area Class At Fuel Train Electrical Area Class At Control Panel Zone 2

Primary Main Power Primary Control Power NWP Industries Inc.

2012

NWP-08562-001-A

Upgrade

Dynamic Combustion

2018-033 Line Heater 01-04-043-13-W5 3750 ft | 1143 m

-29°C to 40°C | -20°F to 104°F

Produced Gas

Sweet < 5ppm H2S and Wet 689 kPag | 100.0 psig 1034 kPag | 150.0 psig

Not approved for secondary fuel use

Produced Gas

Sweet < 5ppm H2S and Wet 689 kPag | 100.0 psig 2.52 GJ/h | 2.39 MM Btuh

83 kPag | 12.0 psig 6.9 kPag | 1.0 psig 48 kPag | 7.0 psig Produced Gas 483 kPag | 70 psig Non-Hazardous

Zone 1

120 VAC / 60 Hz | 15.0 amps 24 VDC | 4.0 amps

FUEL FIRED APPLIANCE FIELD APPROVAL ENEFEN ENERGY EFFICIENCY ENGINEERING LTD.

Field Approval Number: NFN1805015 Approval Date: 08 Jan 2021

Approved By: Jozef Jachniak, P. Eng.

ENEFEN evaluation is based on the authority given to Professional Engineers by Alberta Municipal Affairs as per the requirements of the Gas Code Regulation Variance VAR-GAS-03-19. This approval represents the results of a single field inspection and is not a product certification. This approval is void if this appliance is altered or relocated.

FUEL COMPOSITION REPORT 20210108_1726 Page 1 of 1						
NFN Number	NFN1805015	Product Type	Design Code Field Approval			
Design Code	302C-A5-NW002	Project Status	Appliance Approved			
Field Evidence By	Travis Todd	Owner	Birchill Canada Limited Partnership	LOC	01-04-043-13-W5	
Field Evidence	12 Jun 2018	Plant	Birchill HZ Brazr	Tag		
Report by	Christopher Pascua	Area		Serial	NWP-08562-001-A	
P.Eng. Review by	Jozef Jachniak, P. Eng.	Contact	Garrett Umbach	Phone	250-263-4606	

Fuel Type Fuel Type Reported Date Fuel Type Reported Date Fuel Temperature "C"F C1 Methane C3 Propane C4 Butane C6 Fernane 0,0000 0,0000 C6 Hexane 0,0000 0,0000 C7 Heptane 0,0000 0,0000 C8 as Octane C7 Heptane 0,0000 0,0000 C8 as Octane 0,0000 C9 C3 Carbon Monoxide H ₂ Hydrogen 0,0000 0,0000 C9 C3 Carbon Monoxide H ₂ Hydrogen 0,0000 0,0000 C9 C3 Carbon Monoxide Cy ₁ H ₈ Separate 0,0000 0,0000 C9 C3 Carbon Monoxide Cy ₁ H ₈ Separate 0,0000 0,0000 C9 C3 Carbon Monoxide Cy ₂ H ₈ Separate 0,0000 0,0000 C9 C3 Carbon Monoxide Cy ₂ H ₈ Separate 0,0000 0,0000 C9 C3 Carbon Monoxide Cy ₂ H ₈ Separate 0,0000 0,0000 C9 C3 Carbon Monoxide Cy ₂ H ₈ Separate 0,0000 0,0000 C9 C3 Carbon Monoxide Cy ₂ H ₈ Separate 0,0000 0,0000 C9 C3 Carbon Monoxide Cy ₂ H ₈ Separate 0,0000 0,0000 C9 C3 Carbon Disulfide 0,0000 0,0000 C9 C3 Carbon Disulfide 0,0000 0,0000 C9 C3 Carbon Monoxide C9 C3 Carbon Disulfide 0,0000 0,0000 0,0000 C9 C3 Carbon Disulfide 0,0000 0,0000 0,0000 C9 C3 Carbon Disulfide 0,0000 0,0000 0,0000 C9 C3 Carbon Disulfide 0,0050 0,0050 C9 C3 Carbon Disulfide 0,0050 0,0050 0,0050 C9 C3 Carbon Disulfide 0,0050 0,0050 0,0050 C9 C3 Carbon Disulfide 0,0050 0,0050 0,0050 C9 C3	P.Eng. Review by Jo	zef Jachnia	k, P. Eng.	Contact	Garrett Umbach	Phone	250-263-4606
Fuel Info Source Reported Date Estimated Estimated Reported Date 15.6 / 80.1 15.6 / 80.1 C1 Methane 0.9300 0.9300 C2 Ethane 0.0600 0.0600 C3 Propane 0.0000 0.0000 C5 Pentane 0.0000 0.0000 C6 Hexane 0.0000 0.0000 C7 heptane 0.0000 0.0000 C8 as Octane 0.0000 0.0000 C9 Carbon Monoxide 0.0000 0.0000 H ₂ Hydrogen 0.0000 0.0000 C9 Suffur Vapor 0.0000 0.0000 C9S Carbon Jisulfide 0.0000 0.0000 C3 Carbon Disulfide 0.0000 0.0000 C9 Cysgen 0.0000 0.0000 N ₂ Nitrogen & Inert 0.005 0.005 C9 Carbon Dioxide 0.0000 0.0000 SOGE Suffur Dioxide 0.0000 0.0000 No Sysgen 0.0000 0.0000 No Sysgen 0.0000 0.0000 No Sysgen	Fuel Usage		Pilot Fuel	Main Fuel			
Reported Date Fuel Temperature "C"F 15.6 / 60.1 15	Fuel Type		Produced Gas	Produced Gas			
Euel Temperature "C"F C1 Methane C2 Ethane 0.0800 0.9300 0.9300 0.0900 C3 Propane 0.0020 0.0000 C5 Pentane 0.0000 0.0000 C5 Pentane 0.0000 0.0000 C7 heptane 0.0000 0.0000 C8 as Octane 0.0000 0.0000 C8 as Octane 0.0000 0.0000 CO Carbon Monoxide 0.0000 0.0000 C5 Suffur Vapor 0.0000 0.0000 C5 Carbon Sulfide 0.0000 0.0000 C5 Carbon Dioxide 0.0000 0.0000 CS Sulfur Dioxide 0.0000 0.0000 0.0000 C5 Sulfur Dioxide 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	Fuel Info Source		Estimated	Estimated			
C2 Ethane	Reported Date						
C2 Ethane	· ·	°F					
C3 Propane							
C4 Butane							
C5 Pentane	·						
C6 Hexane							
C7 heptane							
C8 as Octane 0.0000 0.0000 C ₈ H ₈ Benzene 0.0000 0.0000 CO Carbon Monoxide 0.0000 0.0000 H ₂ Hydrogen 0.0000 0.0000 S Sulfur Vapor 0.0000 0.0000 COS Carbonyl Sulfiate 0.0000 0.0000 CS ₂ Carbon Disulfide 0.0000 0.0000 C ₂ Eybertyl Disulfide 0.0000 0.0000 CH ₃ SH Mercaptan 0.0000 0.0000 O ₂ Oxygen 0.0000 0.0000 N ₂ Nitrogen & Inert 0.0050 0.0050 CO ₂ Carbon Dioxide 0.0030 0.0030 SO ₂ Sulfur Dioxide 0.0000 0.0000 Molecular Weight MW 17.0834 17.0834 Fuel Density Ib/ft ³ kg/m ³ 0.045 0.7245 0.045 0.7245 Specific Volume ft ³ lb m ³ kg 22.109 1.3803 2.109 1.3803 Specific Heat Btw/b ⁶ F kJ/kg/ ⁶ C 0.581 2.1274 0.581 2.1274 0.581 2.1274 0.591 0 Specific Heat Btw/scf Btw/b 10.050 23300 1050 23300 1050 23300 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
C _B H ₆ Benzene 0.0000 0.0000 CO Carbon Monoxide 0.0000 0.0000 Yelydrogen 0.0000 0.0000 S Sulfur Vapor 0.0000 0.0000 COS Carbonyl Sulfate 0.0000 0.0000 CS ₂ Carbon Disulfide 0.0000 0.0000 CL ₂ H ₆ S ₂ Dimethyl Disulfide 0.0000 0.0000 C ₂ Sygen 0.0000 0.0000 O ₂ Oxygen 0.0000 0.0000 N ₂ Nitrogen & Inert 0.0050 0.0050 CO ₂ Carbon Dioxide 0.0030 0.0030 SO ₂ Sulfur Dioxide 0.0000 0.0000 Molecular Weight MW 17.0834 17.0834 Fuel Density Ibrif ³ [kg/m³ 0.045 [0.7245 0.045 0.7245 0.045 0.7245 0.045 0.7245 0.045 0.7245 0.045 0.7245 0.045 0.0501 0.050							
CO Carbon Monoxide H ₂ Hydrogen 0,0000 0,0000 S Sulfur Vapor COS Carbonyl Sulfate 0,0000 0,0000 CS ₂ Carbon Disulfide 0,0000 0,0000 CL ₃ SH Mercaptan 0,0000 0,0000 0,0000 CH ₃ SH Mercaptan 0,0000 0,0000 0,0000 0,0000 N ₂ Nitrogen & Inert 0,0050 0,0050 CO ₂ Carbon Dioxide 0,0030 0,0030 SO ₂ Sulfur Dioxide 0,0030 0,0030 SO ₂ Sulfur Dioxide 0,0000 Molecular Weight MW 17,0834 17,0834 Fuel Density lb/ff ³ Kg/m³ 0,045 0,7245 Specific Volume ff³/lb m³/kg Specific Gravity 0,5910 Specific Heat Btu/b/F kJ/kg/r°C 0,5081 2,1274 0,5081 2,1274 Sulfur Content By Weight HHV English Btu/scf Btu/b HHV Bergish Btu/scf Btu/b HHV Bergish Btu/scf Btu/b HHV Metric MJ/m³ MJ/kg 18,0480 10,0480 10,05910 10,0000 10,0							
H₂ Hydrogen 0.0000 0.0000 S Sulfur Vapor 0.0000 0.0000 COS Carbonyl Sulfate 0.0000 0.0000 CS₂ Carbon Disulfide 0.0000 0.0000 C₂ Carbon Disulfide 0.0000 0.0000 C-2 H₀S₂ Dimethyl Disulfide 0.0000 0.0000 O₂ Oxygen 0.0000 0.0000 N₂ Nitrogen & Inert 0.0050 0.0050 CO₂ Carbon Dioxide 0.0030 0.0030 SO₂ Sulfur Dioxide 0.0000 0.0000 Molecular Weight MW 17.0834 17.0834 17.0834 Fuel Density Ib/ft³ kg/m³ 0.045 0.7245 0.045 0.7245 Specific Volume ft³/lb m³/kg Specific Gravity Specific Heat Btu/lb'° F kJ/kg/° C 0.5081 2.1274 0.5081 2.1274 HHV English Btu/scf Btu/lb HHV Metric MJ/m³ MJ/kg 39.2 54.2 HHV English Btu/scf Btu/lb HHV Berlish Btu/scf Btu/lb HHV Berlish Btu/scf Btu/lb HHV Berlish Btu/scf Btu/lb 950 21000 950 21000 H_Q in POC ft³/ft³ 2.0480 2.0480 CO₂ in POC ft³/ft³ 3.00000 0.0000 N₂ in POC ft³/ft³ 7.8772 7.8772		1					
S Sulfur Vapor 0.0000 0.0000 COS Carbonyl Sulfate 0.0000 0.0000 CS₂ Carbon Disulfide 0.0000 0.0000 CH₃SP Imethyl Disulfide 0.0000 0.0000 CH₃SH Mercaptan 0.0000 0.0000 O₂ Oxygen 0.0000 0.0050 N₂ Nitrogen & Inert 0.0050 0.0050 CO₂ Carbon Dioxide 0.0030 0.0030 SO₂ Sulfur Dioxide 0.0000 0.0000 Molecular Weight MW 17.0834 17.0834 Fuel Density Ib/ft³ kg/m³ 0.045 0.7245 0.045 0.7245 Specific Volume ft³/lb m³/kg 22.109 1.3803 22.109 1.3803 Specific Gravity 0.5910 0.5910 Specific Heat Btu/lb/r° kJ/kg/r° C 0.5081 2.1274 0.5081 2.1274 0.5081 2.1274 Specific Heat Btu/lb/r° kJ/kg/r° C 0.5081 2.300 1050 23300 HHV Metric MJ/m³ MJ/kg 39.2 54.2 39.2 54.2 LHV English Btu/scf Btu/lb 950 21000 950 21000 LHV Metric MJ/m³ MJ/kg 35.4 48.9 2.0480 Combustion O₂ ft³/ft³ <td< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></td<>		•					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•					
$\begin{array}{c} \text{CH}_3 \text{SH Mercaptan} \\ \text{O}_2 \text{Oxygen} \\ \text{O}_2 \text{Oxygen} \\ \text{O}_2 \text{Oxygen} \\ \text{O}_2 \text{Oxide} \\ \text{O}_3 \text{O}_3 $	-	lfide					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CH ₃ SH Mercaptan			0.0000			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O ₂ Oxygen		0.0000	0.0000			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N ₂ Nitrogen & Inert		0.0050	0.0050			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CO ₂ Carbon Dioxide		0.0030	0.0030			
Fuel Density Ib/ft³ kg/m³	SO ₂ Sulfur Dioxide		0.0000	0.0000			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Molecular Weight MW	/	17.0834	17.0834			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$		m³/kg	•				
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$,	•					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			•	•			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
H_2O in POC ft ³ /ft ³ 2.0480 2.0480 CO ₂ in POC ft ³ /ft ³ 1.0590 1.0590 N ₂ in POC ft ³ /ft ³ 7.8772 7.8772	· ·	ionig	·				
CO ₂ in POC ft ³ /ft ³ 1.0590 1.0590 N ₂ in POC ft ³ /ft ³ 7.8772 7.8772	_						
N_2 in POC ft ³ /ft ³ 7.8772 7.8772	_						
SO_2 in POC ft ³ /ft ³ 0.0000 0.0000	_						
	SO ₂ in POC ft ³ /ft ³		0.0000	0.0000			

FINAL SETPOINTS 20210108_1726					
NFN Number	N Number NFN1805015 Product Type Design Code Field Approval				
Design Code	302C-A5-NW002	Project Status	Appliance Approved		
Field Evidence By	Travis Todd	Owner	Birchill Canada Limited Partnership	LOC	01-04-043-13-W5
Field Evidence	12 Jun 2018	Plant	Birchill HZ Brazr	Tag	
Prepared By	Christopher Pascua	Area		Serial	NWP-08562-001-A
Reviewed By	Jozef Jachniak, P. Eng.	Contact	Garrett Umbach	Phone	250-263-4606

Main Burner Maximum Pressure 83 kPag | 12.0 psig Main Burner Minimum Pressure 6.9 kPag | 1.0 psig

> **Pilot Pressure** 48 kPag | 7.0 psig

Primary Fuel Inlet Pressure 689 kPag | 100.0 psig

> **Primary Fuel OPPD** 1034 kPag | 150.0 psig

Line Pressure Control Device 689 kPag | 100.0 psig

Pilot Fuel Inlet Pressure 689 kPag | 100.0 psig

> **Pilot Fuel OPPD** 1034 kPag | 150.0 psig

Instrument Gas Inlet Pressure 689 kPag | 100.0 psig Instrument Gas PRV for FCV

152 kPag | 22.0 psig **Instrument Gas for FCV Minimum Pressure**

103 kPag | 15 psig **Instrument Gas for FCV Maximum Pressure** 207 kPag | 30 psig

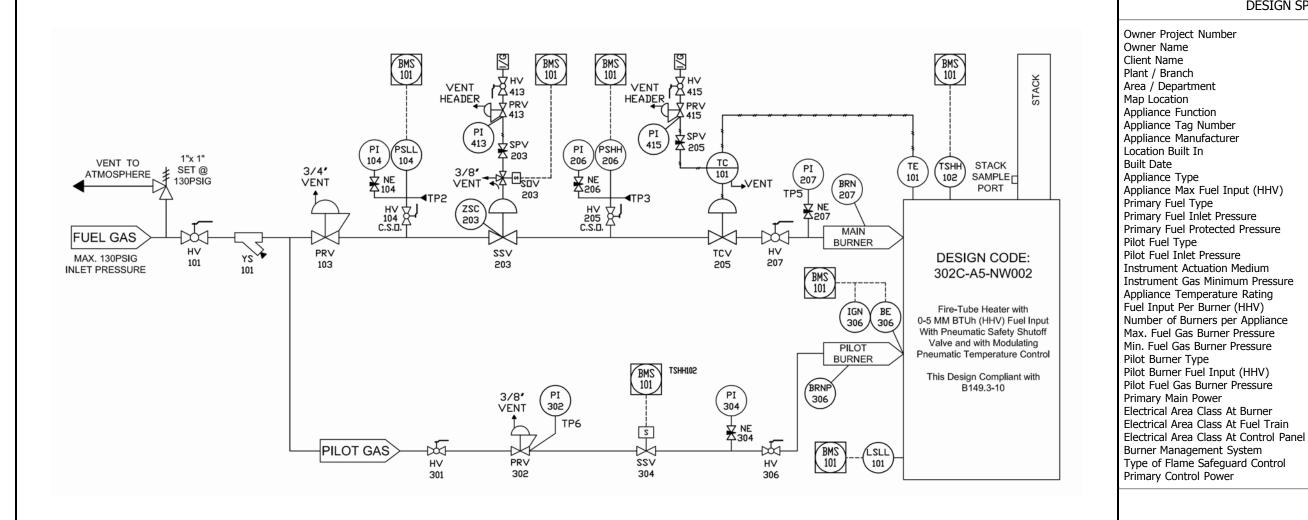
> **Instrument Gas PRV for SSV** 517 kPag | 75.0 psig

Instrument Gas for SSV Minimum Pressure 483 kPag | 70 psig

Instrument Gas for SSV Maximum Pressure 827 kPag | 120 psig

> 90 °C | 194 °F **Process TSHH**

Fuel Gas PSLL 41.4 kPag | 6.0 psig


Fuel Gas PSHH 120.7 kPag | 17.5 psig

45 °C | 113 °F

Controller Temperature Appliance Main Fuel Pressure Control Device 82.7 kPag | 12.0 psig

> **Pilot Pressure Control Device** 48.3 kPag | 7.0 psig

> > **Pilot OPPD** 69 kPag | 10.0 psig

- 1.1 Vent sweet fuel gas separately to a safe location outdoors, using vent line equal in size to the vent outlet connection of the respective device for the first 15 meters, then increase by one pipe size for every additional 15 meters
- 1.2 When venting multiple devices to a common header the cross section of the header shall be equal or larger than a total of cross sections of all devices being vented through that header multiplied by 2.
- 1.3 The discharge of the vent line (vent header) shall be located not less than 3ft (1m) horizontally from any building opening that is below the level of such discharge, not beneath any building, and not less than 10ft (3m) in any direction from air openings into a direct vent appliance, a mechanical air intake, or a source of ignition.
- 1.4 An outdoor vent line termination or device vent outlet shall be equipped with a means to prevent the entry of water, insects or foreign material. When venting sour fuel gas, appropriate project / plant specific measures shall be taken under consideration to ensure safety.

PIPING

- 2.1 All fuel gas supply piping upstream and including the main manual shutoff valve HV101 shall be compliant with ASME B31.3 or CSA B149.1. All piping and equipment downstream of the main manual shutoff valve HV101 shall be
- 2.2 All piping, fittings and instrument tubing materials shall be as specified in the Bill of Materials for this project. 2.3 Piping upstream of PRV103 to be hydro tested to 375 psig per ABSA approved procedure or tested as per CSA B149.1. Piping downstream of PRV103 to be pneumatically soap tested with compressed air to 45 psig according to ENEFEN pneumatic test procedure.

PPROVED BY:

APPROVED DATE:

08 Jan 2021

ozef Jachniak, P. Eng.

PERMIT TO PRACTICE

UNIONS & FLANGES

3.1 Sufficient unions / flange connections shall be provided by the installer to allow tightening or disassembly of individual fuel train components and of the main and pilot burner without affecting other components. Locations are not shown on this drawing and are subject to the physical layout of fuel train, windbox, and the burner.

VALVES

- 4.1 Manual ball valves shall be installed with handle in open position pointing in the direction of flow
- 4.2 HV207 and PI207 shall be mounted on burner windbox.

PRV DESIGN

5.1 A single regulator with internal relief design may be used in lieu of a PSV to protect downstream components from overpressure.

SWITCHES

Under the authority given to Professional Engineers by Alberta Municipal Affairs as per the requirements of the Gas Code Regulation Variance VAR-GAS-03-19

6.1 PSLL and PSHH shall be mounted as close as practicable above fuel train so that they are easily accessible for calibration, are self-draining, and possibility of freezing is minimized.

6.2 Quarter-turn isolating ball valve shall be in L.O. (locked open) position. Instrument tubing union shall be installed between the valve and the switch, and switch wired using flex cable to allow partial removal for calibration. 6.3 LSLL shall be mounted so that the fire tube is totally immersed, with a minimum of 2 inches of liquid above its top tangent

REVISION

PROJECT NOTES

REVISION DESCRIPTION

DATE

INSPECTION BODY REOUIREMENTS USED AS BASIS FOR EVALUATION

- ISO/IEC 17020:2012 Requirements for the operation of inspection
- Program: ASB_RG_IBAP_v0.1_2016-02-25
 Any of the following codes that are relevant to this installation:
- CAN/CSA-B149.1-15 Natural gas and propane installation
 - CAN/CSA-B149.2-15 Propane storage and handling code CAN/CSA-B149.3-15 Code For The Field Approval Of Fuel-
 - Related Components On Appliances and Equipment CSA STD C22 1-15 Canadian Electrical Code, Part I Safety Standard for Electrical Installations
 - CAN/BNO 1784-000 Canadian Hydrogen Installation Code
 - CSA B51-14 Boiler, pressure vessel and pressure piping coo
 - Relevant requirements of the National Building Code of Canada and the National Fire Code of Canada

GAS APPLIANCE DESIGN APPROVED IN PRINCIPLE SUBJECT TO FIELD INSPECTION

GAS APPLIANCE FIELD INSPECTION PASSED FIELD APPROVAL COMPLETE

NWP INDUSTRIES INC.

Copyright © 2018 Drawing: NFN1805015-100 Design By: ENEFEN Engineering Ltd. Drawn By: ENEFEN Engineering Ltd.

Birchill Canada Limited Partnership Birchill HZ Brazr -01-04-043-13-W5

This document is subject to a Design Approval in Principle. The completed and

No part substitution allowed without written authorization from ENEFEN. In

addition, the design and the installation of the appliance may be subject to other

local gas safety regulations, permits, and Field Approvals, Field Approval and all

INSTALLATION MAY REQUIRE LOCAL PERMITS

permits are void if this appliance is altered or relocated.

working appliance is subject to a compulsory Field Inspection. Both steps must be

dated and signed and sealed by a qualified professional engineer in fields provided

DESIGN SPECIFICATIONS

Birchill Canada Limited Partnership

Dynamic Combustion

Indirect Fired Gas Heating

2.52 GJ/h | 2.39 MM Btuh

689 kPag | 100.0 psiq

1034 kPag | 150.0 psig

689 kPag | 100.0 psig

-29°C to 40°C | -20°F to 104°F

1.261 GJ/h | 1.195 MM Btuh

Electric / Pneumatic

483 kPag | 70 psig

83 kPag | 12.0 psig

6.9 kPag | 1.0 psig

48 kPag | 7.0 psig

Single Burner FSG

24 VDC | 4.0 amps

Non-Hazardous

Zone 1

Zone 2

Intermittent / Continuous

0.03 GJ/h | 0.03 MM Btuh

120 VAC / 60 Hz | 15.0 amps

Prepackaged / CSA Certified.

Birchill HZ Brazr

01-04-043-13-W5

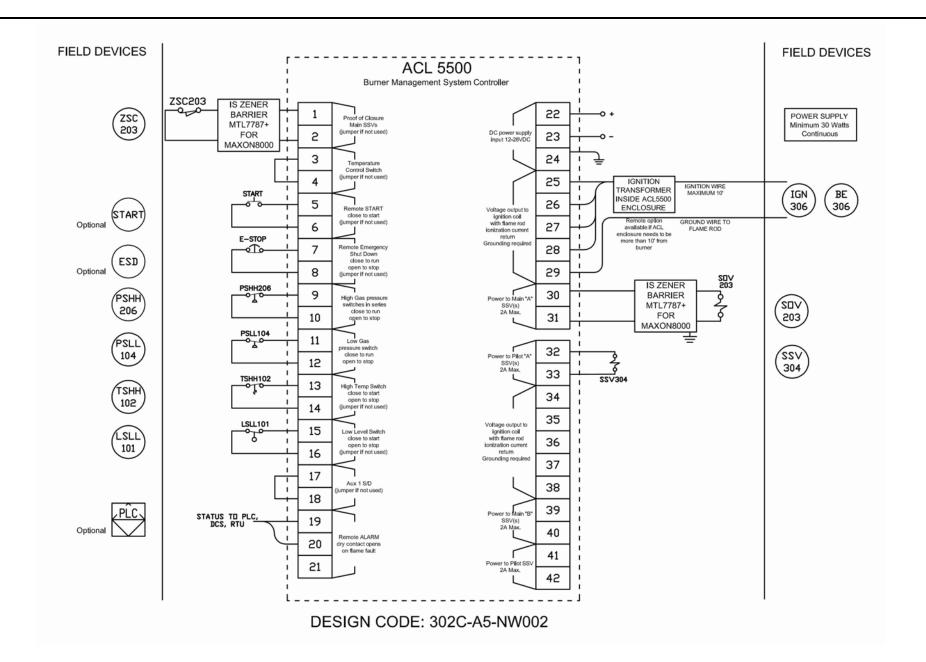
NWP Industries Inc.

2012

Line Heater

Produced Gas

Produced Gas


PIPING & INSTRUMENTATION DIAGRAM (P&ID)

Line Heater

2.52 GJ/h | 2.39 MM Btuh

SIZE: B	NFN1805015-P100	REV: 0
SCALE: None	01/08/2021	SHEET 1 OF 1

NOTES

- 1. All electrical work shall be performed by qualified personnel.
- 2. All electrical materials and methods shall be appropriate for the specified environment and Electrical Classification Areas and in compliance with the CSA22.1 Canadian Electric Code. Wiring shall be 14Ga minimum, except for thermocouple wiring which
- 3. Electrical seals and wiring methods shall be installed as required by the CSA 22.1-12 Canadian Electrical Code.
- 4. PSLL and PSHH shall be mounted as close as practicable above fuel train so that they are easily accessible for calibration, are self-draining, and possibility of freezing is minimized. Quarter-turn isolating ball valve shall be in L.O. (locked open) position.
- 5. Instrument tubing union shall be installed between the valve and the switch, and switch wired using flex cable to allow partial removal for calibration.
- 6. Zener barriers can be used to install safety shut-off valves with a Class 1 Div 2 rating in a Class 1 Zone 1 area.

INSPECTION BODY REQUIREMENTS USED AS BASIS FOR EVALUATION

- ISO/IEC 17020:2012 Requirements for the operation of inspection
- Program: ASB_RG_IBAP_v0.1_2016-02-25
 Any of the following codes that are relevant to this installation:
- CAN/CSA-B149.1-15 Natural gas and propane installation
- CAN/CSA-B149.2-15 Propane storage and handling code
 CAN/CSA-B149.3-15 Code For The Field Approval Of Fuel-
- Related Components On Appliances and Equipment CSA STD C22 1-15 Canadian Electrical Code Part I Safety Standard for Electrical Installations
- CAN/BNQ 1784-000 Canadian Hydrogen Installation Code CSA B51-14 Boiler, pressure vessel and pressure piping coo
- Relevant requirements of the National Building Code of Canada and the National Fire Code of Canada

GAS APPLIANCE DESIGN APPROVED IN PRINCIPLE SUBJECT TO FIELD INSPECTION

PPROVED BY: ozef Jachniak, P. Eng. APPROVED DATE: 08 Jan 2021 PERMIT TO PRACTICE

GAS APPLIANCE FIELD INSPECTION PASSED FIELD APPROVAL COMPLETE

APPROVED BY: Jozef Jachniak, P. Eng. APPROVED DATE: 08 Jan 2021 PERMIT TO PRACTICE 08977

Under the authority given to Professional Engineers by Alberta Municipal Affairs as per the requirements of the Gas Code Regulation Variance VAR-GAS-03-19

NWP INDUSTRIES INC.

Copyright © 2018 Drawing: NFN1805015-200 Design By: ENEFEN Engineering Ltd. Drawn By: ENEFEN Engineering Ltd.

DESIGN SPECIFICATIONS

Owner Project Number Owner Name Client Name Plant / Branch Area / Department Map Location Appliance Function Appliance Tag Number Primary Main Power Electrical Area Class At Fuel Train Electrical Area Class At Control Panel Electrical Area Class At Burner Burner Management System Type of Flame Safeguard Control Primary Control Power

Birchill Canada Limited Partnership **Dynamic Combustion** Birchill HZ Brazr 01-04-043-13-W5 Indirect Fired Gas Heating 120 VAC / 60 Hz | 15.0 amps Zone 1 Zone 2

Non-Hazardous

Single Burner FSG

24 VDC | 4.0 amps

Prepackaged / CSA Certified.

PROJECT NOTES

This document is subject to a Design Approval in Principle. The completed and working appliance is subject to a compulsory Field Inspection. Both steps must be dated and signed and sealed by a qualified professional engineer in fields provided. INSTALLATION MAY REQUIRE LOCAL PERMITS

No part substitution allowed without written authorization from ENEFEN. In addition, the design and the installation of the appliance may be subject to other local gas safety regulations, permits, and Field Approvals. Field Approval and all permits are void if this appliance is altered or relocated.

REVISION REVISION DESCRIPTION DATE

> Birchill Canada Limited Partnership Birchill HZ Brazr -01-04-043-13-W5

SYSTEM WIRING DIAGRAM

Line Heater

2.52 GJ/h | 2.39 MM Btuh

SIZE: B	NFN1805015-E200	REV: 0
SCALE: None	01/08/2021	SHEET 1 OF 1