

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Customer Name Reference Date 3/12/2008 Run #1 End User Name Atmospheric Pressure 12.90 psi Item Screw Open 3577 ft Project Elevation **COMPRESSOR - TDSH 283L** Compressor Power 1460.1 hp Compression Ratio 5.93 Eff Model Hydrocarbon Mix Speed 3550 rpm Volume Ratio 4.39 Volumetric Eff 74.0% Percent Suct Vol Flow 82.5% Ideal Volume Ratio 4.39 Adiabatic Eff 71.8% Discharge Port Standard Temperature Pressure Mass Flow Volume Flow Standard Volume Flow (MMSCFD) (lbm/min) (°F) (psig) (cfm) (scfm) Suction 80.0 48.6 327.3 1737.7 7144.6 10.288 Discharge 245.0 352.0 382.4 7144.6 10.288 327.3 **OIL SYSTEM** Oil Type CP-1516-100 Oil Cooler Heat Rej 2111.2 kbtu/hr Oil Pump Boost 0.0 psi Oil Flow 97:9 gpm Main Inj Oil Temp 160.0 °F Oil System Pres Drop 10.0 psi Main Inj Oil Flow Bearing Oil Temp 160.0 °F Main Inj Orifice Dia 0.469 in 64.3 gpm Bearing Oil Flow 33.6 gpm Oil Cooling All Oil Main Inj Cv 5.0 Oil Pump Piping All Oil Main Inj Valve Pos 100.0% Main Inj Valve Dia 1.00 in **SYSTEM FLUID** Upstream Temperature 80.0 °F Downstream Temperature 245.0 °F Molecular Weight 17.38 **Upstream Pressure** 48.6 psig Downstream Pressure 352.0 psig Cp/Cv 1.30 Compressibility Z 0.98 Suct Line Superheat 0.0 °F Disc Line Desuperheat 0.0 °F Molecular Weight 17.38 Suct Line Pres Drop Disc Line Pres Drop 0.0 psi 0.0 psi Separator Pres Drop 0.0 psi **ERRORS AND WARNINGS** Disclaimer: the information contained in this program is subject to change without notice. Frick reserves the right to final verification of all rating results

BY JOHNSON CONTROLS			- I <i>J</i>					
CoolWare v7.1.2		Reg	istered To: Toromo	ont Energy Sys	items - Jai	mes Storoshenko		
Customer Name End User Name Project			Referen Item	oce Screw C	pen	Date 3/12/20 Atmospheric Elevation	Pressure	Run # 1 12.90 psi 3577 ft
		COM	PRESSOR - TD	SH 283L				
Compressor Power	1460.1 hp	Compression Ra	atio		Eff Model		Hydi	rocarbon Mix
Speed	3550 rpm	Volume Ratio		4.39	Volumetri	c Eff		74.0%
Percent Suct Vol Flow	82.5%	Ideal Volume Ra Discharge Port	atio	4.39 Standard	Adiabatic	Eff		71.8%
	Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)		ne Flow fm)	(scfm)		SCFD)
Suction	80.0	48.6	327.3		37.7	7144.6		0.288
Discharge	245.0	352.0	327.3	38	32.4	7144.6	1	0.288
			OIL SYSTEM					
Oil Type	CP-1516-1	00 Oil Cooler He	at Rej	2111.2 kbt	u/hr Oil F	ump Boost		0.0 ps
Oil Flow	97.9 gr	om Main Inj Oil Te	emp	160.0	o°F Oil S	system Pres Drop		10.0 ps
Main Inj Oil Flow	64.3 gr	m Bearing Oil Te	emp	160.0	o°F Mair	ı İnj Orifice Dia		0.469 ir
Bearing Oil Flow	33.6 gr	m Oil Cooling		Al	l Oil Mair	ı Inj Cv		5.0
Oil Pump Piping	All (Oil Main Inj Valve	e Pos	100	.0% Mair	ı Inj Valve Dia		1.00 ir
		SYSTEM				FI	LUID	
Upstream Temperature	80	.0 °F Downstrea	m Temperature		245.0 °F	Molecular Weight		17.38
Upstream Pressure	48.6	psig Downstrea	m Pressure	3	52.0 psig	Cp/Cv		1.30
Suct Line Superheat	0	.0 °F Disc Line D	Desuperheat	•	0.0 °F	Compressibility Z		0.98
Suct Line Pres Drop	0.	0 psi Disc Line F	Pres Drop		0.0 psi	Molecular Weight	17.38	
		Separator I	Pres Drop		0.0 psi			
			COMPRESSO	R				
	<u>Bearings</u>					Rotors		
Position	Loa		L10 (hrs)		·		Male	
Male Inlet Radial	50			Rotor Thrust D			Norma	
Male Outlet Radial	76			Balance Piston			12112.3 lb	
Female Inlet Radial	56		1	nlet Blocking D			411 µir 611 µir	•
Female Outlet Radial	115			Outlet Blocking			1014 µii	•
Male Axial	33	· ·	37915	Max Rotor Bod	-	Max allowable deflect	•	
						DOOL AUCIVEALUE CIENTELL	いかしと 1サリ ロロ	L .
Female Axial	36	56		Rotor Shaft Fa			2.50	

CoolWare v7.1.2		Regi	stered To: Toromor	t Energy Sy	stems - Jai	mes Storoshenko		
Customer Name End User Name Project			Referenc Item	e Screw (Open		Date 3/12/2008 Atmospheric Pressure Elevation	
		COMI	PRESSOR - TDS	H 283L				
Compressor Power Speed Percent Suct Vol Flow	3550 rpm	Compression Ra Volume Ratio Ideal Volume Ra		3.82	Eff Model Volumetric Adiabatic		Hy	drocarbon Mix 71.4% 72.3%
		Discharge Port		Standard				
	Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)		me Flow cfm)	(scfm)	······	ISCFD)
Suction	80.0	58.6	367.1		376.8	8015.2		11.542
Discharge	240.7	352.0	367.1	4	26.4	8015.2		11.542
			OIL SYSTEM					
Oil Type	CP-1516-1	00 Oil Cooler Hea	at Rej	1963.1 kb	tu/hr Oil P	ump Boost		0.0 psi
Oil Flow	5,	m Main Inj Oil Te	•			rystem Pres Drop		10.0 psi
Main Inj Oil Flow		m Bearing Oil Te	emp			Inj Orifice Dia		0.469 in
Bearing Oil Flow	Ψ.	m Oil Cooling			II Oil Mair			5.0
Oil Pump Piping	All (Dil Main Inj Valve	Pos	100	0.0% Mair	Inj Valve Dia		1.00 in
		SYSTEM				F	LUID	
Upstream Temperature	80	.0 °F Downstrear	m Temperature		240.7 °F	Molecular Weight		17.38
Upstream Pressure	58.6	psig Downstrear	m Pressure		352.0 psig	Cp/Cv		1.30
Suct Line Superheat	0	.0 °F Disc Line D	esuperheat		0.0 °F	Compressibility Z		0.98
Suct Line Pres Drop	0.	0 psi Disc Line P	res Drop		0.0 psi	Molecular Weight	17.38	
		Separator F	Pres Drop		0.0 psi			
		ERR	RORS AND WAR	VINGS				
Di	isclaimer: the information contains	ed in this program is subi	ect to change without notice	. Frick reserves	the right to fina	al verification of all rating resu	lts.	

BY JOHNSON CONTROLS	Open System								
CoolWare v7.1.2		Reg	istered To: Toro	mont Energy :	Systems	s - Jam	es Storoshenko		
Customer Name End User Name Project			Refe Item	erence n Screw Open		Date 3/12/20 Atmospheric Elevation		Run # 2 12.90 psi 3577 ft	
		COM	PRESSOR - T	DSH 283L					
Compressor Power Speed Percent Suct Vol Flow	3550 rpm V 79,2% Id	ompression Ra olume Ratio eal Volume Ra ischarge Port		5.1 3.8 3.8 Standar	32 Volu 32 Adia	lodel metric batic E		Hyd	rocarbon Mix 71.4% 72.3%
	Temperature F	ressure (psig)	Mass Flow (lbm/min)		lume Fl (cfm)	ow	(scfm)		SCFD)
Suction	80.0	58.6	367.1		1676.8		8015.2		1.542
Discharge	240.7	352.0	367.1		426.4		8015.2		1.542
			OIL SYSTE	EM .					
Oil Type Oil Flow Main Inj Oil Flow Bearing Oil Flow Oil Pump Piping	CP-1516-100 Oil Cooler 96.0 gpm Main Inj O 63.4 gpm Bearing O 32.6 gpm Oil Cooling All Oil Main Inj V		Inj Oil Temp ing Oil Temp ooling		1963.1 kbtu/hr Oil Pu 160.0 °F Oil Sy 160.0 °F Main I All Oil Main I 100.0% Main I		nj Orifice Dia nj Cv		0.0 ps 10.0 ps 0.469 ir 5.0
	S	STEM					F	LUID	1.
Upstream Temperature Upstream Pressure Suct Line Superheat Suct Line Pres Drop		F Downstrea ig Downstrea F Disc Line D			352.0 0.	psig 0 °F	Molecular Weight Cp/Cv Compressibility Z Molecular Weight	17.38	17.38 1.30 0.98
			COMPRESS	SOR					
Position	<u>Bearings</u> Load It	f	L10 (hrs)	<u> </u>			Rotors	Mal	e Female
Male Inlet Radial Male Outlet Radial Female Inlet Radial	5052 7731 5638		78133 93406 81297	Rotor Thrus Balance Pis Inlet Blockin	ton For			Norma 11699.5 lk 415 µi	of 0.0 lbf
Female Outlet Radial Male Axial	11678 633		35431 1000000	Outlet Block Max Rotor E	king Dia	p. :	tou othoughts dod	620 μi 1027 μi	n 865 µin n 1386 µin
Female Axial	3612		39309	l Rotor Shaft	Fatigue		iax allowable deflect Factor	tion 2140 µi 2.5	
		FRI	RORS AND W	ARNINGS					

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Reference Run # 3 **Customer Name** Screw Open Atmospheric Pressure 12.90 psi Item End User Name 3577 ft Project Elevation **COMPRESSOR - TDSH 283L** Hydrocarbon Mix Compressor Power 1460.3 hp Compression Ratio Eff Model Volumetric Eff 69.9% Speed 3550 rpm Volume Ratio 73.0% Adiabatic Eff 77.1% Ideal Volume Ratio 3.38 Percent Suct Vol Flow Discharge Port Standard Volume Flow Standard Volume Flow Mass Flow Temperature Pressure (°<u>F)</u> (MMSCFD) (lbm/min) (cfm) (scfm) (psig) 80.0 409.2 1639.8 8934.5 12.866 68.6 Suction 12.866 Discharge 236.3 352.0 409.2 472.3 8934.5 **OIL SYSTEM** Oil Cooler Heat Rei 1815.6 kbtu/hr Oil Pump Boost 0.0 psi CP-1516-100 Oil Type Oil System Pres Drop 10.0 psi Main Inj Oil Temp 160.0 °F 94.1 gpm Oil Flow 160.0 °F Main Inj Orifice Dia 0.469 in Bearing Oil Temp Main Inj Oil Flow 62.5 gpm 5.0 All Oil Main Inj Cv 31.6 gpm Oil Cooling Bearing Oil Flow 1.00 in 100.0% Main Inj Valve Dia All Oil Main Inj Valve Pos Oil Pump Piping **SYSTEM FLUID** 236.3 °F Molecular Weight 17.38 80.0 °F Downstream Temperature Upstream Temperature 1.30 68.6 psig 352.0 psig Cp/Cv Downstream Pressure Upstream Pressure Compressibility Z 0.98 0.0 °F Disc Line Desuperheat 0.0 °F Suct Line Superheat Molecular Weight 17.38 0.0 psi 0.0 psi Disc Line Pres Drop Suct Line Pres Drop 0.0 psi Separator Pres Drop **ERRORS AND WARNINGS**

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Run#3 Date 3/12/2008 Reference Customer Name 12.90 psi Atmospheric Pressure Item Screw Open End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Eff Model Hydrocarbon Mix Compressor Power 1460.3 hp Compression Ratio 69.9% 3.38 Volumetric Eff Volume Ratio 3550 rpm Speed 73.0% 3.38 Adiabatic Eff 77.1% Ideal Volume Ratio Percent Suct Vol Flow Standard Discharge Port Standard Volume Flow Mass Flow Volume Flow Temperature Pressure (MMSCFD) (scfm) (lbm/min) (cfm) (°F) (psig) 12.866 1639.8 8934.5 409.2 80.0 68.6 Suction 8934.5 12.866 472.3 236.3 352.0 409.2 Discharge **OIL SYSTEM** 0.0 psi 1815.6 kbtu/hr Oil Pump Boost CP-1516-100 Oil Cooler Heat Rej Oil Type Oil System Pres Drop 10.0 psi 160.0 °F 94.1 gpm Main Inj Oil Temp Oil Flow 0.469 in Main Inj Orifice Dia 62.5 gpm Bearing Oil Temp 160.0 °F Main Inj Oil Flow 5.0 All Oil Main Inj Cv Oil Cooling 31.6 gpm Bearing Oil Flow 1.00 in 100.0% Main Inj Valve Dia Main Inj Valve Pos All Oil Oil Pump Piping **FLUID SYSTEM** 236.3 °F Molecular Weight 17.38 80.0 °F Downstream Temperature Upstream Temperature 1.30 Cp/Cv Downstream Pressure 352.0 psig 68.6 psig Upstream Pressure Compressibility Z 0.98 0.0 °F 0.0 °F Disc Line Desuperheat Suct Line Superheat Molecular Weight 17.38 0.0 psi 0.0 psi Disc Line Pres Drop Suct Line Pres Drop 0.0 psi Separator Pres Drop **COMPRESSOR Rotors** Bearings Male Female Load lbf L10 (hrs) Position Normal Normal Rotor Thrust Direction Male Inlet Radial 5078 76828 0.0 lbf 11286.6 lbf Balance Piston Force 89349 7835 Male Outlet Radial 542 µin 79483 Inlet Blocking Dia 420 µin 5676 Female Inlet Radial Outlet Blocking Dia 627 µin 872 µin 34634 11758 Female Outlet Radial 1398 µin 1000000 Max Rotor Body 1039 µin Male Axial 939 40737 Max allowable deflection 2140 µin Female Axial 3570 2.12 Rotor Shaft Fatigue Safety Factor **ERRORS AND WARNINGS** Disclaimer: the information contained in this program is subject to change without notice. Frick reserves the right to final verification of all rating results

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1,2 Date 3/12/2008 Run # 4 Reference Customer Name Screw Open Atmospheric Pressure 12.90 psi Item End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Eff Model Hydrocarbon Mix Compressor Power 1460.3 hp Compression Ratio 3.04 Volumetric Eff 69.0% Speed 3550 rpm Volume Ratio 3.04 Adiabatic Eff 73.6% 75.9% Ideal Volume Ratio Percent Suct Vol Flow Discharge Port Standard Volume Flow Standard Volume Flow Temperature Mass Flow Pressure (MMSCFD) (°F) (psig) (lbm/min) (cfm) (scfm) 80.0 453.9 1619.9 9909.0 14.269 Suction 78.6 9909.0 14.269 231.8 352.0 453.9 520.5 Discharge **OIL SYSTEM** CP-1516-100 Oil Cooler Heat Rej 1668.7 kbtu/hr Oil Pump Boost 0.0 psi Oil Type 160.0 °F Oil System Pres Drop 10.0 psi 92.0 gpm Main Inj Oil Temp Oil Flow Bearing Oil Temp 160.0 °F Main Inj Orifice Dia 0.469 in 61.4 gpm Main Inj Oil Flow 5.0 Oil Cooling All Oil Main Inj Cv Bearing Oil Flow 30.6 gpm 1.00 in 100.0% Main Inj Valve Dia Oil Pump Piping All Oil Main Inj Valve Pos SYSTEM **FLUID** 231.8 °F Molecular Weight 17.38 Upstream Temperature 80.0 °F Downstream Temperature 78.6 psig | Downstream Pressure 352.0 psig Cp/Cv 1.30 Upstream Pressure Compressibility Z 0.98 0.0 °F Disc Line Desuperheat 0.0 °F Suct Line Superheat Molecular Weight 17.38 Suct Line Pres Drop 0.0 psi Disc Line Pres Drop 0.0 psi 0.0 psi Separator Pres Drop

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Run#4 Reference Customer Name 12.90 psi Screw Open Atmospheric Pressure Item End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix Eff Model Compressor Power 1460.3 hp Compression Ratio 69.0% Volumetric Eff 3.04 3550 rpm Volume Ratio Speed 73.6% 3.04 Adiabatic Eff Ideal Volume Ratio Percent Suct Vol Flow 75.9% Standard Discharge Port Mass Flow Volume Flow Standard Volume Flow Pressure Temperature (MMSCFD) (cfm) (scfm) (lbm/min) (°F) (psig) 14.269 9909.0 453.9 1619.9 80.0 78.6 Suction 9909.0 14.269 352.0 453.9 520.5 231.8 Discharge **OIL SYSTEM** Oil Pump Boost 0.0 psi Oil Cooler Heat Rei 1668.7 kbtu/hr CP-1516-100 Oil Type 160.0 °F Oil System Pres Drop 10.0 psi Main Inj Oil Temp 92.0 gpm Oil Flow 0.469 in Bearing Oil Temp 160.0 °F Main Inj Orifice Dia 61.4 gpm Main Inj Oil Flow Main Inj Cv 5.0 30.6 gpm All Oil Oil Cooling Bearing Oil Flow Main Inj Valve Dia 1.00 in 100.0% Main Inj Valve Pos Oil Pump Piping All Oil **FLUID SYSTEM** Molecular Weight 17.38 231.8 °F Downstream Temperature Upstream Temperature 80.0 °F Cp/Cv 1.30 78.6 psig Downstream Pressure 352.0 psig Upstream Pressure Compressibility Z 0.98 Disc Line Desuperheat 0.0 °F 0.0 °F Suct Line Superheat Molecular Weight 17.38 0.0 psi Disc Line Pres Drop 0.0 psi Suct Line Pres Drop 0.0 psi Separator Pres Drop COMPRESSOR Rotors **Bearings** Female Load lbf L10 (hrs) Male Position Rotor Thrust Direction Normal Normal Male Infet Radial 5231 69592 10873.8 lbf 0.0 lbf 78303 Balance Piston Force 8151 Male Outlet Radial 435 µin 561 µin 70776 Inlet Blocking Dia Female Inlet Radial 5877 652 µin 902 µin Outlet Blocking Dia 31208 Female Outlet Radial 12131 Max Rotor Body 1080 µin 1449 µin 434682 Male Axial 1509 Max allowable deflection 2140 µin 40489 3577 Female Axial 2.06 Rotor Shaft Fatigue Safety Factor **ERRORS AND WARNINGS** Disclaimer: the information contained in this program is subject to change without notice. Frick reserves the right to final verification of all rating results

CoolWare v7.1.2		Regi	stered To: Toromor	nt Energy Sy	stems - Jan	ies Storoshenko		
Customer Name End User Name Project			Referend Item	se Screw (Open	Date 3/12/20 Atmospheric F Elevation		Run # 5 12.90 psi 3577 ft
		COM	PRESSOR - TDS	H 283L				
Compressor Power Speed Percent Suct Vol Flow	•	np Compression Ra m Volume Ratio % Ideal Volume Ra Discharge Port		3.60 2.77 2.77 Standard			Hy	drocarbon Mix 68.8% 74.4%
Suction Discharge	Temperature (°F) 80.0 227.2	Pressure (psig) 88.6 352.0	Mass Flow (lbm/min) 501.8 501.8	(me Flow cfm) 614.6 571.6	Standard (scfm) 10955.8 10955.8	Volume I (MN	Flow MSCFD) 15.776 15.776
Discrizinge			OIL SYSTEM					
Oil Type Oil Flow Main Inj Oil Flow Bearing Oil Flow Oil Pump Piping	89.8 60.2 29.6	-100 Oil Cooler He gpm Main Inj Oil Te gpm Bearing Oil Te gpm Oil Cooling Il Oil Main Inj Valve	emp emp	160 160 <i>A</i>	.0 °F Main III Oil Main	/stem Pres Drop Inj Orifice Dia		0.0 psi 10.0 psi 0.469 in 5.0 1.00 in
		SYSTEM				FI	LUID	
Upstream Temperature Upstream Pressure Suct Line Superheat Suct Line Pres Drop			Desuperheat Pres Drop		227.2 °F 352.0 psig 0.0 °F 0.0 psi 0.0 psi	Molecular Weight Cp/Cv Compressibility Z Molecular Weight	17.38	17.38 1.30 0.98
		ERF	RORS AND WAR	NINGS				

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Run # 5 Date 3/12/2008 Reference **Customer Name** 12.90 psi Atmospheric Pressure Item Screw Open End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix 3.60 Eff Model Compressor Power 1460.3 hp Compression Ratio 68.8% 2.77 Volumetric Eff Volume Ratio Speed 3550 rpm 74.4% 2.77 Adiabatic Eff Ideal Volume Ratio Percent Suct Vol Flow 75.5% Standard Discharge Port Mass Flow Volume Flow Standard Volume Flow Temperature Pressure (MMSCFD) (lbm/min) (cfm) (scfm) (°F) (psig) 10955.8 15.776 1614.6 80.0 88.6 501.8 Suction 15.776 10955.8 571.6 227.2 352.0 501.8 Discharge OIL SYSTEM 1521.0 kbtu/hr Oil Pump Boost 0.0 psi CP-1516-100 Oil Cooler Heat Rej Oil Type Oil System Pres Drop 10.0 psi Main Inj Oil Temp 160.0 °F 89.8 gpm Oil Flow 0.469 in 60.2 gpm Bearing Oil Temp 160.0 °F Main Inj Orifice Dia Main Inj Oil Flow All Oil Main Inj Cv 5.0 29.6 gpm Oil Cooling Bearing Oil Flow 100.0% Main Inj Valve Dia 1.00 in All Oil Main Inj Valve Pos Oil Pump Piping **FLUID** SYSTEM 227.2 °F Molecular Weight 17.38 Downstream Temperature Upstream Temperature 80.0 °F 1.30 352.0 psig Cp/Cv Downstream Pressure Upstream Pressure 88.6 psig 0.98 Compressibility Z 0.0 °F Disc Line Desuperheat 0.0 °F Suct Line Superheat Molecular Weight 17.38 0.0 psi 0.0 psi Disc Line Pres Drop Suct Line Pres Drop 0.0 psi Separator Pres Drop COMPRESSOR Bearings Rotors Female Male Load lbf L10 (hrs) Position Normal 59886 Rotor Thrust Direction Normal Male Inlet Radial 5472 10461.0 lbf 0.0 lbf Balance Piston Force 8612 65196 Male Outlet Radial Inlet Blocking Dia 458 µin 592 µin 59414 6194 Female Inlet Radial Outlet Blocking Dia 687 µin 948 µin 26760 12704 Female Outlet Radial 129400 Max Rotor Body 1139 µin 1527 µin 2260 Male Axial 39116 Max allowable deflection 2140 µin Female Axial 3618 Rotor Shaft Fatigue Safety Factor 1.97

CoolWare v7.1.2		Registered To: Toromont Energy Systems - James Storoshenko Reference Date 3/12/2008 Run # 6								
Customer Name End User Name Project			Referenc Item	e Screw (Open	=	Date 3/12/2008 Atmospheric Pressure Elevation			
· · · · · · · · · · · · · · · · · · ·		COMI	PRESSOR - TDS	H 283L						
Compressor Power Speed Percent Suct Vol Flow	3550 rpm	1460.4 hp Compression Rat 3550 rpm Volume Ratio 75.6% Ideal Volume Rat		2.54	Eff Model Volumetric Adiabatic I		Hy	drocarbon Mix 69.0% 75.1%		
	Temperature	Discharge Port Pressure	Mass Flow	1	me Flow	Standard (scfm)	l Volume	Flow //SCFD)		
Suction Discharge	(°F) 80.0 222.5	(psig) 98.6 352.0	(Ibm/min) 553.0 553.0	1	cfm) 619.6 625.6	12072.3 12072.3	(IVIII	17.384 17.384		
Dioditalgo			OIL SYSTEM				<u> </u>			
Oil Type Oil Flow Main Inj Oil Flow Bearing Oil Flow Oil Pump Piping	87.4 g 58.8 g 28.6 g	00 Oil Cooler Hea pm Main Inj Oil Te pm Bearing Oil Te pm Oil Cooling Oil Main Inj Valve	emp emp	160 <i>A</i>	.0 °F Oil S .0 °F Main M. Oil Main	ump Boost ystem Pres Drop Inj Orifice Dia Inj Cv Inj Valve Dia	-	0.0 ps 10.0 ps 0.469 ir 5.0 1.00 ir		
		SYSTEM				F	LUID			
Upstream Temperature Upstream Pressure Suct Line Superheat Suct Line Pres Drop	98.	D.0 °F Downstrear D.0 °F Disc Line D Disc Line P Separator F	esuperheat res Drop		222.5 °F 352.0 psig 0.0 °F 0.0 psi 0.0 psi	Molecular Weight Cp/Cv Compressibility Z Molecular Weight	17.38	17.38 1.30 0.98		
		FRR	ORS AND WAR	NINGS						

BY JOHNSON CONTROLS				pon oje.						
CoolWare v7.1.2			Regis	stered To: Toron	nont Energy	System	s - Jar	nes Storoshenko		
Customer Name End User Name Project				Refere Item	rence Screw Open			Atmospheric Pressure 12.9		Run # 6 12.90 psi 3577 ft
			COMF	RESSOR - TI	OSH 283L					
Compressor Power	1460.4 hp	Com	pression Rat	io	3.2	1	Model		Hyd	Irocarbon Mi
Speed	3550 rpm		me Ratio		2.5		umetrio			69.0%
Percent Suct Vol Flow	75.6%		Volume Rat	io	2.5		abatic	Eff		75.1%
		Disch	harge Port		Standa					
	Temperature		ssure	Mass Flow	Vo	olume F	low		d Volume F	
	(°F)		sig)	(lbm/min)		(cfm)		(scfm)		SCFD) 17.384
Suction	80.0		8.6	553.0		1619.6 625.6		12072.3 12072.3		17.3 <u>64</u> 17.384
Discharge	222.5	35	52.0	553.0		025.0		12072.3		17.504
-				OIL SYSTE						
Oil Type			il Cooler Hea		1374.5			ump Boost		0.0 ps
Oil Flow			ain Inj Oil Te			60.0 °F		ystem Pres Drop		10.0 ps
Main Inj Oil Flow	~	58.8 gpm Bearing Oil Temp 160.0 °F Main Inj Orifice Dia					0.469 i 5.			
Bearing Oil Flow	28.6 g		il Cooling	_						ა. 1.00 i
Oil Pump Piping	All	Oil M	ain Inj Valve	Pos		100.0%	IVIAIR	Inj Valve Dia		1.001
	-	SYS	TEM						LUID	
Upstream Temperatur	-			n Temperature			2.5 °F	Molecular Weight		17.38
Upstream Pressure	98.	6 psig	Downstream	n Pressure) psig	Cp/Cv		1.30
Suct Line Superheat			Disc Line D				0.0 °F	Compressibility Z	17.38	0.98
Suct Line Pres Drop).0 psi	Disc Line P				.0 psi	Molecular Weight	17.30	
			Separator F	res Drop		0	.0 psi			
				COMPRESS	OR					
*	<u>Bearings</u>							<u>Rotors</u>		
Position		ad Ibf		L10 (hrs)					Ma	
Male Inlet Radial		688		52614	Rotor Thrus				Norm 10048.2 I	
Male Outlet Radial		015		55975	Balance Pi		гсе		480 µ	
Female Inlet Radial		508		50377	Inlet Blocki Outlet Bloc		5		720 µ	-
Female Outlet Radial		3 1 93 910		23593 60635	Max Rotor	_	,		1194 µ	•
Male Axial		910 640		38410	IVIAN I VOIDI	Dody		Max allowable deflec		•
Female Axial	3	040		30410	Rotor Shaf	t Fatigu			2.2	
			ERR	ORS AND WA	ARNINGS					
	Disclaimer: the information contai	ned in this				rves the ri	ght to fin	al verification of all rating res	ults.	
				4						

	•	pen cyste.				-				
		Reference Item		Open			Run # 7 12.90 psi 3577 ft			
	COM	PRESSOR - TDS	H 283L	-		-				
3550 rpm	Volume Ratio		2.35	Volumetric		Hy	drocarbon Mix 69.6% 75.8%			
Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)			(scfm)		ISCFD)			
80.0 217.7	108.6 352.0	607.9 607.9			13271.3 13271.3		19.111 19.111			
		OIL SYSTEM								
84.8 gr 57.3 gr 27.5 gr	om Main Inj Oil Te om Bearing Oil Te om Oil Cooling	emp	160 160 A	.0 °F Oil S .0 °F Main .ll Oil Main	ystem Pres Drop Inj Orifice Dia Inj Cv		0.0 psi 10.0 psi 0.469 in 5.0 1.00 in			
	SYSTEM				FI FI	LUID				
108.6	psig Downstrea 0.0 °F Disc Line Disc Line F	m Pressure Desuperheat Pres Drop		217.7 °F 352.0 psig 0.0 °F 0.0 psi 0.0 psi	Molecular Weight Cp/Cv Compressibility Z Molecular Weight	17.38	17.38 1.30 0.98			
	ERF	ORS AND WAR	VINGS				····			
	3550 rpm 76.2% Temperature (°F) 80.0 217.7 CP-1516-1 84.8 gp 57.3 gp 27.5 gp All 6	COMI 1460.4 hp 3550 rpm 76.2% Ideal Volume Ratio Ideal Volume Ideal V	Registered To: Toromon Reference Item COMPRESSOR - TDS 1460.4 hp Compression Ratio Volume Ratio Ideal Volume Ratio Discharge Port Temperature Pressure Mass Flow (PF) (psig) (Ibm/min) 80.0 108.6 607.9 217.7 352.0 607.9 CP-1516-100 Oil Cooler Heat Rej Main Inj Oil Temp Bearing Oil Temp 57.3 gpm 27.5 gpm All Oil Main Inj Valve Pos SYSTEM 80.0 °F Downstream Temperature Downstream Pressure 0.0 °F Disc Line Desuperheat Disc Line Pres Drop Separator Pres Drop	Registered To: Toromont Energy Sy Reference Item	Registered To: Toromont Energy Systems - Jar	Registered To: Toromont Energy Systems - James Storoshenko Reference Item	Registered To: Toromont Energy Systems - James Storoshenko Reference Item Screw Open Date 3/12/2008 Atmospheric Pressure Elevation Atmospheric Pressure Elevation Atmospheric Pressure Elevation Standard Volume Ratio 2.35 Volumetric Eff Adiabatic Eff Standard Standard			

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Run # 7 Reference Customer Name 12.90 psi Screw Open Atmospheric Pressure Item End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix Eff Model 1460.4 hp Compression Ratio Compressor Power 69.6% 2.35 Volumetric Eff Volume Ratio 3550 rpm Speed 75.8% Adiabatic Eff 2.35 76.2% Ideal Volume Ratio Percent Suct Vol Flow Standard Discharge Port Volume Flow Standard Volume Flow Mass Flow Temperature Pressure (MMSCFD) (lbm/min) (cfm) (°F) (psig) 19.111 1633.9 13271.3 108.6 607.9 Suction 80.0 19.111 13271.3 607.9 682.8 352.0 217.7 Discharge **OIL SYSTEM** 0.0 psi 1228.9 kbtu/hr Oil Pump Boost Oil Cooler Heat Rej CP-1516-100 Oil Type Oil System Pres Drop 10.0 psi 160.0°F Main Inj Oil Temp 84.8 gpm Oil Flow 0.469 in 160.0 °F Main Inj Orifice Dia Bearing Oil Temp Main Inj Oil Flow 57.3 gpm 5.0 All Oil Main Inj Cv Oil Cooling 27.5 gpm Bearing Oil Flow 1.00 in 100.0% Main Inj Valve Dia All Oil Main Inj Valve Pos Oil Pump Piping **FLUID** SYSTEM 17.38 217.7 °F Molecular Weight Downstream Temperature 80.0 °F Upstream Temperature 1.30 352.0 psig Cp/Cv Downstream Pressure 108.6 psig Upstream Pressure 0.98 Compressibility Z 0.0 °F 0.0 °F Disc Line Desuperheat Suct Line Superheat 17.38 Molecular Weight Disc Line Pres Drop 0.0 psi 0.0 psi Suct Line Pres Drop 0.0 psi Separator Pres Drop COMPRESSOR Rotors Bearings Male Female L10 (hrs) Load lbf Position Rotor Thrust Direction Normal Normal 54914 Male Inlet Radial 5616 9635.3 lbf 0.0 lbf Balance Piston Force 59894 8833 Male Outlet Radial Inlet Blocking Dia 477 µin 623 µin 6563 48991 Female Inlet Radial 712 µin 981 µin Outlet Blocking Dia 25327 Female Outlet Radial 12915 1186 µin 1597 µin Max Rotor Body 2801 67986 Male Axial Max allowable deflection 2140 µin 3519 42537 Female Axial Rotor Shaft Fatigue Safety Factor 1.94 **ERRORS AND WARNINGS**

BY JOHNSON CONTROLS		•	pen syste	111			***	
CoolWare v7.1.2		Regi	stered To: Toromor	it Energy Sy	/stems - Jai	mes Storoshenko		
Customer Name End User Name Project				ce Screw Open			Date 3/12/2008 Atmospheric Pressure Elevation	
		COMI	PRESSOR - TDS	H 283L				
Compressor Power Speed Percent Suct Vol Flow	3550 rpm	1460.3 hp Compression Ratio 3550 rpm Volume Ratio 77.5% Ideal Volume Ratio Discharge Port			2.77 Eff Model 2.20 Volumetric Eff 2.20 Adiabatic Eff Standard		Hydrocarbon I 71. 77.	
	Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)		me Flow cfm)	Standard (scfm)		ISCFD)
Suction	80.0	118.6	671.6	100711		14661.1		21.112
Discharge	212.4	352.0	671.6	7	48.4	14661.1		21.112
<u>.</u>			OIL SYSTEM					
Oil Type Oil Flow Main Inj Oil Flow Bearing Oil Flow Oil Pump Piping	81.8 g 55.3 g 26.5 g	IOO Oil Cooler Hea pm Main Inj Oil Te pm Bearing Oil Te pm Oil Cooling Oil Main Inj Valve	emp	160 160 <i>A</i>	.0 °F Oil S .0 °F Mair All Oil Mair	Pump Boost System Pres Drop n Inj Orifice Dia n Inj Cv n Inj Valve Dia		0.0 ps 10.0 ps 0.469 i 5. 1.00 i
		SYSTEM				F	LŲID	
Upstream Temperature Upstream Pressure Suct Line Superheat Suct Line Pres Drop	118.		esuperheat res Drop		212.4 °F 352.0 psig 0.0 °F 0.0 psi 0.0 psi	Molecular Weight Cp/Cv Compressibility Z Molecular Weight	17.38	17.38 1.30 0.98
		EDE	ORS AND WAR	NINGS				

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Run #8 Reference Customer Name 12.90 psi Atmospheric Pressure Screw Open Item End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix 2.77 Eff Model Compression Ratio Compressor Power 1460.3 hp 71.1% 2.20 Volumetric Eff 3550 rpm Volume Ratio Speed 77.0% 2.20 Adiabatic Eff 77.5% Ideal Volume Ratio Percent Suct Vol Flow Standard Discharge Port Standard Volume Flow Volume Flow Mass Flow Temperature Pressure (MMSCFD) (cfm) (scfm) (lbm/min) (psig) (°F) 21.112 1667.7 14661.1 671.6 80.0 118.6 Suction 21.112 748.4 14661.1 671.6 352.0 Discharge 212.4 **OIL SYSTEM** 0.0 psi 1074.5 kbtu/hr | Oil Pump Boost Oil Cooler Heat Rei CP-1516-100 Oil Type * 10.0 psi Oil System Pres Drop 160.0 °F 81.8 gpm Main Inj Oil Temp Oil Flow 160.0 °F Main Inj Orifice Dia 0.469 in Bearing Oil Temp Main Inj Oil Flow 55.3 gpm 5.0 All Oil Main Inj Cv Oil Cooling 26.5 gpm Bearing Oil Flow 1.00 in Main Inj Valve Dia 100.0% All Oil Main Ini Valve Pos Oil Pump Piping **FLUID SYSTEM** 17,38 Molecular Weight 212.4 °F Downstream Temperature Upstream Temperature 80.0 °F Cp/Cv 1.30 352.0 psig Downstream Pressure **Upstream Pressure** 118.6 psig 0.98 Compressibility Z 0.0 °F Disc Line Desuperheat Suct Line Superheat 0.0 °F Molecular Weight 17.38 0.0 psi Disc Line Pres Drop 0.0 psi Suct Line Pres Drop 0.0 psi Separator Pres Drop COMPRESSOR Rotors Bearings Male Female Load lbf L10 (hrs) Position Rotor Thrust Direction Normal Normal 5608 55155 Male Inlet Radial 9222.5 lbf 0.0 lbf Balance Piston Force 64084 8656 Male Outlet Radial 478 µin 632 µin 45943 Inlet Blocking Dia 6691 Female Inlet Radial 981 µin 706 µin Outlet Blocking Dia 26406 12754 Female Outlet Radial 1185 µin 1610 µin 65721 Max Rotor Body 2833 Male Axial Max allowable deflection 2140 µin 46194 3423 Female Axial Rotor Shaft Fatigue Safety Factor 2.31 1.96 **ERRORS AND WARNINGS** Disclaimer: the information contained in this program is subject to change without notice. Frick reserves the right to final verification of all rating results

BY JOHNSON CONTROLS		`	- pun - yuun	•				
CoolWare v7.1.2		Reg	istered To: Toromont	Energy Sy	stems - Jar	nes Storoshenko		
Customer Name End User Name Project			Reference Item	Screw (Open	Date 3/12/200 Atmospheric F Elevation		Run # 9 12.90 psi 3577 ft
	"	COM	PRESSOR - TDSH	283L				
Compressor Power	1460.1	hp Compression Ra	atio	2.58	Eff Model	<u> </u>	Hy	drocarbon Mix
Speed	3550 rj	pm Volume Ratio		2.20	Volumetric	: Eff		72.4%
Percent Suct Vol Flow	78.8	8% Ideal Volume Ra Discharge Port		2.06 Standard	Adiabatic	Eff		77.6%
	Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)		me Flow cfm)	Standard (scfm)		MSCFD)
Suction	80.0	128.6	736.0	1698.5		16067.3		23.137
Discharge	207.3	352.0	736.0	8	314.0	16067.3		23.137
	****		OIL SYSTEM					
Oil Type	CP-151	6-100 Oil Cooler He	at Rej	932.0 kb	tu/hr Oil P	ump Boost		0.0 psi
Oil Flow	78.8	3 gpm Main Inj Oil Te	emp			ystem Pres Drop	-	10.0 psi
Main Inj Oil Flow	53.3	3 gpm Bearing Oil To	emp			Inj Orifice Dia		0.469 in
Bearing Oil Flow	25.5	5 gpm Oil Cooling			All Oil Main			5.0
Oil Pump Piping	•	All Oil Main Inj Valve	e Pos	10	0.0% Main	Inj Valve Dia		1.00 in
		SYSTEM				FL	.UID	
Upstream Temperature		80.0 °F Downstrea	m Temperature		207.3 °F	Molecular Weight		17.38
Upstream Pressure		28.6 psig Downstrea	m Pressure		352.0 psig	Cp/Cv		1.30
Suct Line Superheat			Desuperheat		0.0 °F	Compressibility Z		0.98
Suct Line Pres Drop		0.0 psi Disc Line F	Pres Drop		0.0 psi	Molecular Weight	17.38	
		Separator	Pres Drop		0.0 psi			
		ERF	RORS AND WARN	INGS				
	Disclaimer: the information cor	ntained in this program is sub	ject to change without notice.	Frick reserves	the right to fina	l verification of all rating resul	ts.	

		-					
	Regi			stems - Ja			
		Referer Item		Open		: Pressure	Run # 9 12.90 psi 3577 ft
	COM	PRESSOR - TD					
1460.1 hp	Compression Ra	atio	2.58	Eff Mode		Hydr	ocarbon Mix
3550 rpm	Volume Ratio						72.4%
78.8%	Ideal Volume Ra	ntio	2.06	Adiabatio	Eff		77.6%
	Discharge Port		Standard				
Temperature	Pressure	Mass Flow	Volu	me Flow	Standa		
(°F)	(psig)	(lbm/min)			(scfm)		
80.0	128.6	736.0					3.137
207.3	352.0	736.0	8	14.0	16067.3	2	3.137
		OIL SYSTEN	Λ				
CP-1516-10	00 Oil Cooler He	at Rej	932.0 kb				0.0 ps
			160	.0 °F Oil	System Pres Drop		10.0 ps
			160	.0 °F Mai	n Inj Orifice Dia		0.469 i
		•					5.0
		e Pos	10	0.0% Mai	n Inj Valve Dia		1.00 i
	SYSTEM					FLUID	
		m Temperature		207.3 °F	Molecular Weight	. "	17.38
			;	352.0 psig	Cp/Cv		.1.30
					Compressibility Z		0.98
_		•		0.0 ps	Molecular Weight	17.38	
	J. Copper			•			
		COMPRESSO)R				
Bearings			····		Rotors		
	d lbf	L10 (hrs)				Male	
58	06	.00					
89	52	57283	Balance Pisto	n Force			
70	41					•	•
13′	124	I		-			
33	59		Max Rotor Bo	dy			
34	21	46282				•	
		<u> </u>	Rotor Shaft F	atigue Saf	ety Factor	2.2	4 1.91
	3550 rpm 78.8% Temperature (°F) 80.0 207.3 CP-1516-10 78.8 gp 53.3 gp 25.5 gp All 0 80 128.6 0 0. 0. Bearings Loa 58 89 70 133	Temperature (°F) 80.0 CP-1516-100 78.8 gpm 53.3 gpm 25.5 gpm All Oil Rownstrea 0.0 °F 128.6 Downstrea 0.0 °F 0.0 psi Disc Line for Separator	COMPRESSOR - TD	Reference Item	Reference Item	Atmospheric Elevation COMPRESSOR - TDSH 283L 1460.1 hp 3550 rpm 78.8% Ideal Volume Ratio 2.20 Volumetric Eff 2.20 Volumetric E	Reference Item

BY JOHNSON CONTROLS Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Run # 10 Reference Customer Name 12.90 psi Atmospheric Pressure Screw Open Item End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix Eff Model Compression Ratio 1460.1 hp Compressor Power 73.7% Volumetric Eff Volume Ratio Speed 3550 rpm 77.8% Adiabatic Eff 1.94 Ideal Volume Ratio Percent Suct Vol Flow 80.1% Standard Discharge Port Volume Flow Standard Volume Flow Mass Flow Pressure Temperature (MMSCFD) (lbm/min) (cfm) (°F) (psig) 17509.1 25.213 802.0 1728.8 138.6 80.0 Suction 25.213 17509.1 802.0 880.5 352.0 202.4 Discharge **OIL SYSTEM** Oil Pump Boost 0.0 psi 799.4 kbtu/hr CP-1516-100 Oil Cooler Heat Rei Oil Type 10.0 psi Oil System Pres Drop 160.0 °F Main Inj Oil Temp Oil Flow 75.6 gpm 0.469 in 160.0 °F Main Inj Orifice Dia Bearing Oil Temp 51.2 gpm Main Inj Oil Flow All Oil Main Inj Cv 5.0 24.4 gpm Oil Cooling Bearing Oil Flow 1.00 in 100.0% Main Inj Valve Dia All Oil Main Inj Valve Pos Oil Pump Piping **FLUID** SYSTEM Molecular Weight 17.38 Downstream Temperature 202.4 °F 80.0 °F Upstream Temperature Cp/Cv 1.30 352.0 psig Downstream Pressure 138.6 psig Upstream Pressure 0.98 Compressibility Z 0.0 °F Disc Line Desuperheat 0.0 °F Suct Line Superheat Molecular Weight 17.38 0.0 psi Disc Line Pres Drop 0.0 psi Suct Line Pres Drop 0.0 psi Separator Pres Drop **ERRORS AND WARNINGS**

Y JOHNSON CONTROLS		<u> </u>	<u> </u>					
CoolWare v7.1.2		Reg	istered To: Toromo		s - Jan	nes Storoshenko Date 3/12/200		
Customer Name End User Name Project			Referen Item		Screw Open		ressure 1	Run # 10 2.90 psi 577 ft
		COM	IPRESSOR - TDS					
Compressor Power	1460.1 hp	Compression Ra	atio	2.41 Eff i			Hydro	carbon Mix
Speed		Volume Ratio		2.20 Volu				73.7%
Percent Suct Vol Flow	80.1%	Ideal Volume Ra Discharge Port	atio	1.94 Adia Standard	abatic E			77.8%
	Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)	Volume F (cfm)		(scfm)	Volume Flor (MMS)	CFD)
Suction	80.0	138.6	802.0	1728.8		17509.1		.213
Discharge	202.4	352.0	802.0	880.5		17509.1	25	5.213
			OIL SYSTEM					
Oil Type	CP-1516 - 10	00 Oil Cooler He	eat Rej	799.4 kbtu/hr		ump Boost		0.0 ps
Oil Flow		m Main Inj Oil T		160.0 °F		ystem Pres Drop		10.0 ps
Main Inj Oil Flow	51.2 gp	m Bearing Oil T	emp			Inj Orifice Dia		0.469 i
Bearing Oil Flow	24.4 gp	m Oil Cooling			Main	•		5.
Oil Pump Piping	Ali (Dil Main Inj Valv	e Pos	100.0%	Main	Inj Valve Dia		1.00 i
		SYSTEM					.UID	
Upstream Temperature	80	.0 °F Downstrea	am Temperature	202	.4 °F	Molecular Weight		17.38
Upstream Pressure	138.6	psig Downstrea	am Pressure) psig	Cp/Cv		1.30
Suct Line Superheat	0	.0 °F Disc Line	Desuperheat	-).0 °F	Compressibility Z	47.00	0.98
Suct Line Pres Drop	0.	0 psi Disc Line			.0 psi	Molecular Weight	17.38	
		Separator	Pres Drop	0	.0 psi			
			COMPRESSO	R				
	Bearings	···	_			<u>Rotors</u>		
Position	Loa	d lbf	L10 (hrs)				Male	
Male Inlet Radial	59	47	100,	Rotor Thrust Direc			Normal	
Male Outlet Radial	91		V -	Balance Piston For	·ce		8396.9 lbf	
Female Inlet Radial		14		nlet Blocking Dia			513 µin	
Female Outlet Radial		384		Outlet Blocking Dia	3		754 µin 1272 µin	-
Male Axial		47		Max Rotor Body		Max allowable deflect	•	•
Female Axial	34	15	46515	Rotor Shaft Fatigu			ιοπ 2140 μm 2.20	
					e Sale	ty r actor	2.20	1.01
		ER	RORS AND WAR	RNINGS				
	is also as the information contain	ed in this program is er	ibject to change without not	ice. Frick reserves the ri	ght to fin:	al verification of all rating resu	lts.	

BY JOHNSON CONTROLS		`	opon oyoto					
CoolWare v7.1.2		Reg	istered To: Toromon	t Energy Sy	stems - Jar	nes Storoshenko		
Customer Name End User Name Project			Referenc Item	e Screw (Open	Date 3/12/20 Atmospheric Elevation		Run # 1 12.90 psi 3577 ft
		COM	PRESSOR - TDS	H 283L	• • • • • • • • • • • • • • • • • • • •			
Compressor Power Speed Percent Suct Vol Flow	1460.1 hp 3550 rpm 93.3%	Volume Ratio		4.02	Eff Model Volumetric Adiabatic		Ну	drocarbon Mix 84.8% 76.6%
	Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)		me Flow cfm)	Standard (scfm)	l Volume I (MN	(ISCFD)
Suction Discharge	80.0 244.0	48.6 317.0	374.7 374.7		989.8 83.6	8181.0 8181.0		11.781 11.781
			OIL SYSTEM		<u> </u>			
Oil Type Oil Flow Main Inj Oil Flow Bearing Oil Flow Oil Pump Piping	30.3 g		emp emp	160 A	.0 °F Oil S .0 °F Main II Oil Main	ump Boost ystem Pres Drop Inj Orifice Dia Inj Cv Inj Valve Dia		0.0 ps 10.0 ps 0.469 ir 5.0 1.00 ir
		SYSTEM				F	LUID	
Upstream Temperature Upstream Pressure Suct Line Superheat Suct Line Pres Drop	48.6	0.0 °F Downstrea 6 psig Downstrea 0.0 °F Disc Line I .0 psi Disc Line F Separator	m Pressure Desuperheat Pres Drop		244.0 °F 317.0 psig 0.0 °F 0.0 psi 0.0 psi	Molecular Weight Cp/Cv Compressibility Z Molecular Weight	17.38	17.38 1.30 0.98
		FRI	RORS AND WAR	VINGS				

CoolWare v7.1.2	<u> </u>		Regis	tered To: Toromo	nt Energy Sy	stems - Ja	mes Storoshenko		
Customer Name End User Name Project	Reference Item			screw (Open	Date 3/12/2 Atmospheric Elevation	Pressure 1	Run # 1 2.90 psi 3577 ft	
			COMP	RESSOR - TD					
Compressor Power	1460.1 hp		ression Rat	io		Eff Model		Hydr	carbon Mix 84.8%
Speed	3550 rpm	1	ne Ratio			Volumetri			76.6%
Percent Suct Vol Flow	93.3%		Volume Rati arge Port	0	4.02 Standard	Adiabatic	<u>Ε</u> π		70.076
	Temperature	Press		Mass Flow		me Flow cfm)	Standa (scfm)	rd Volume Flo (MMS	
	(°F)	(psi		(lbm/min)		989.8	8181.0		1.781
Suction	80.0	48.		374.7 374.7		83.6	8181.0		1.781
Discharge	244.0	317	7.0			00.0	0.0.00		
				OIL SYSTEM				<u></u>	0.0 ps
Oil Type	CP-1516-1	1	Cooler Hea		1889.9 kb		Pump Boost		0.0 ps 10.0 ps
Oil Flow	* 88.7 gr		in Inj Oil Te				System Pres Drop		0.469 ii
Main Inj Oil Flow			aring Oil Te	mp		.u °F Maii II Oil Maii	n Inj Orifice Dia		5.0
Bearing Oil Flow			Cooling	_			n Inj Cv n Inj Valve Dia		1.00 ii
Oil Pump Piping	All	Oil Ma	in Inj Valve	Pos	10	0.0% Wal			1.00 %
		SYST	EM					FLUID	47.55
Upstream Temperature				n Temperature		244.0 °F	Molecular Weight		17.38
Upstream Pressure	48.6		Downstrean			317.0 psig	Cp/Cv		1.30 0.98
Suct Line Superheat			Disc Line D			0.0 °F		17.38	0.30
Suct Line Pres Drop	. 0		Disc Line P			0.0 psi	Molecular Weight	17.56	
		,	Separator P	res Drop		0.0 psi			
				COMPRESSO	OR .				
	Bearings	_	-				<u>Rotors</u>		
Position		ad lbf		L10 (hrs)				Male	
Male Inlet Radial	52	282		1	Rotor Thrust			Norma	
Male Outlet Radial	77	761		v	Balance Pisto			10580.7 lb	
Female Inlet Radial	==	253		*	Inlet Blocking			435 µii	
Female Outlet Radial		992			Outlet Blockin	_		636 µii 1069 µii	
Male Axial		800			Max Rotor Bo	ay	May allowable defe	•	•
Female Axial	38	540		41765	D-1 018 T	ations Oct	Max allowable defle	ection 2140 µii 2.5	
					Rotor Shaft F	atigue Saf	ety Factor	2.0	2.00
				ORS AND WA					

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Run#2 Reference **Customer Name** 12.90 psi Atmospheric Pressure Screw Open Item End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Eff Model Hydrocarbon Mix 4.61 Compressor Power 1460.0 hp Compression Ratio 81.7% 3.49 Volumetric Eff 3550 rpm Volume Ratio Speed 76.7% 3.49 Adiabatic Eff Ideal Volume Ratio 89.5% Percent Suct Vol Flow Standard Discharge Port Volume Flow Standard Volume Flow Mass Flow Pressure Temperature (MMSCFD) (scfm) (lbm/min) (cfm) (psig) (°F) 9171.2 13.207 1918.7 58.6 420.1 80.0 Suction 9171.2 13.207 538.3 239.0 317.0 420.1 Discharge **OIL SYSTEM** 0.0 psi 1731.2 kbtu/hr | Oil Pump Boost CP-1516-100 Oil Cooler Heat Rei Oil Type 10.0 psi Oil System Pres Drop 160.0 °F 86.6 gpm Main Inj Oil Temp Oil Flow 0.469 in Main Inj Orifice Dia 160.0 °F Bearing Oil Temp Main Inj Oil Flow 57.3 gpm 5.0 Main Inj Cv All Oil Oil Cooling Bearing Oil Flow 29.3 gpm 1.00 in Main Inj Valve Dia 100.0% All Oil Main Inj Valve Pos Oil Pump Piping **FLUID SYSTEM** 17.38 239.0 °F Molecular Weight 80.0 °F Downstream Temperature Upstream Temperature Cp/Cv 1.30 58.6 psig | Downstream Pressure 317.0 psig Upstream Pressure 0.98 Compressibility Z 0.0 °F Disc Line Desuperheat 0.0 °F Suct Line Superheat 17.38 Molecular Weight Disc Line Pres Drop 0.0 psi 0.0 psi Suct Line Pres Drop 0.0 psi Separator Pres Drop **ERRORS AND WARNINGS**

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Run#2 Reference Customer Name 12.90 psi Screw Open Atmospheric Pressure ltem End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix 4.61 Eff Model Compression Ratio 1460.0 hp Compressor Power 81.7% 3.49 Volumetric Eff Volume Ratio Speed 3550 rpm 76.7% Adiabatic Eff 3.49 Ideal Volume Ratio 89.5% Percent Suct Vol Flow Standard Discharge Port Volume Flow Standard Volume Flow Mass Flow Pressure Temperature (MMSCFD) (scfm) (lbm/min) (cfm) (psig) (°F) 13.207 9171.2 1918.7 420.1 80.0 58.6 Suction 13.207 9171.2 420.1 538.3 317.0 Discharge 239.0 **OIL SYSTEM** 0.0 psi 1731.2 kbtu/hr Oil Pump Boost CP-1516-100 | Oil Cooler Heat Rej Oil Type - 10.0 psi Oil System Pres Drop 160.0 °F Main Inj Oil Temp Oil Flow 86.6 gpm 0.469 in 160.0 °F Main Inj Orifice Dia Bearing Oil Temp 57.3 gpm Main Inj Oil Flow 5.0 All Oil Main Ini Cv 29.3 gpm Oil Cooling Bearing Oil Flow 1.00 in 100.0% Main Inj Valve Dia All Oil Main Inj Valve Pos Oil Pump Piping **FLUID SYSTEM** Molecular Weight 17.38 239.0 °F Downstream Temperature 80.0 °F Upstream Temperature Cp/Cv 1.30 58.6 psig Downstream Pressure 317.0 psig Upstream Pressure 0.98 Compressibility Z 0.0 °F Disc Line Desuperheat 0.0 °F Suct Line Superheat Molecular Weight 17.38 0.0 psi 0.0 psi Disc Line Pres Drop Suct Line Pres Drop 0.0 psi Separator Pres Drop COMPRESSOR Rotors Bearings Female Male L10 (hrs) Load lbf Position Normal Rotor Thrust Direction Normal 67814 Male Inlet Radial 5271 0.0 lbf 10254.6 lbf Balance Piston Force 88305 7862 Male Outlet Radial 437 µin 583 µin Inlet Blocking Dia 6225 58426 Female Inlet Radial 642 µin 912 µin Outlet Blocking Dia 12007 32293 Female Outlet Radial 1077 µin 1487 µin Max Rotor Body 153827 2134 Male Axial Max allowable deflection 2140 µin 43924 3481 Female Axial 2.08 Rotor Shaft Fatigue Safety Factor **ERRORS AND WARNINGS**

BY JOHNSON CONTROLS		(Open Syste	m			ENI	ERGY SYSTEMS
CoolWare v7.1.2		Regi	stered To: Toromor	nt Energy Sy	stems - Jar	mes Storoshenko		
Customer Name End User Name Project	Reference				Open	Date 3/12/200 Atmospheric F Elevation		Run # 3 12.90 psi 3577 ft
	·	COM	PRESSOR - TDS	H 283L				
Compressor Power Speed Percent Suct Vol Flow	•	np Compression Ra om Volume Ratio '% Ideal Volume Ra Discharge Port		4.05 3.09 3.09 Standard	Volumetrio	=	Hy	drocarbon Mix 80.1% 77.1%
	Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)		me Flow cfm)	Standard (scfm)		(SCFD)
Suction Discharge	80.0 233.8	68.6 317.0	469.2 469.2		880.1 96.8	10243.7 10243.7		14.751 14.751
			OIL SYSTEM					
Oil Type Oil Flow Main Inj Oil Flow Bearing Oil Flow Oil Pump Piping	84.3 56.0 28.3	CP-1516-100 Oil Cooler Heat Rej 84.3 gpm Main Inj Oil Temp 56.0 gpm Bearing Oil Temp 28.3 gpm Oil Cooling All Oil Main Inj Valve Pos		160 A	.0 °F Oil S .0 °F Mair III Oil Mair	Pump Boost System Pres Drop n Inj Orifice Dia n Inj Cv n Inj Valve Dia	-	0.0 psi 10.0 psi 0.469 in 5.0 1.00 in
		SYSTEM				FL	.UID	
Upstream Temperature80.0 °IUpstream Pressure68.6 psiSuct Line Superheat0.0 °I		8.6 psig Downstrea	0 °F Downstream Temperature psig Downstream Pressure 0 °F Disc Line Desuperheat		233.8 °F 317.0 psig 0.0 °F 0.0 psi	Molecular Weight Cp/Cv Compressibility Z Molecular Weight	17.38	17.38 1.30 0.98
Suct Line Pres Drop		Separator			0.0 psi	3.1		
		ERF	RORS AND WAR	NINGS				
Đ	sclaimer: the information con	tained in this program is sub	ject to change without notic	e. Frick reserves	s the right to fina	al verification of all rating resul	ts.	

BY JOHNSON CONTROLS			Shell Shar					-	
CoolWare v7.1.2		Reg	istered To: Torom	ont Energy Sy	ystems -	James St			
Customer Name End User Name Project			Refere Item	nce Screw	Open		Date 3/12/20 Atmospheric I Elevation	Pressure	Run # 3 12.90 psi 3577 ft
		COM	PRESSOR - TE	SH 283L					
Compressor Power Speed Percent Suct Vol Flow	eed 3550 rpm Volu			4.05 3.09 3.09 Standard	Adiaba	etric Eff		Hydr	ocarbon Mix 80.1% 77.1%
	Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)		me Flov (cfm)	′	(scfm)	l Volume Flo (MMS	CFD)
Suction Discharge	80.0 233.8	68.6 317.0	469.2 469.2		880.1 596.8		10243.7 10243.7		4.751 4.751
Discharge	200.0		OIL SYSTEI					<u> </u>	
Oil Type Oil Flow Main Inj Oil Flow Bearing Oil Flow Oil Pump Piping	84.3 gp 56.0 gp 28.3 gp	Oll Cooler He Main Inj Oil T Bearing Oil T Oil Cooling Main Inj Valve	emp emp	160 /	0.0 °F 0 0.0 °F N All Oil N	oil Pump E Oil System Main Inj Oi Main Inj Oi Main Inj Va	Pres Drop rifice Dia V		0.0 psi 10.0 psi 0.469 in 5.0 1.00 in
		SYSTEM					FI	LUID	
Upstream Temperature Upstream Pressure Suct Line Superheat Suct Line Pres Drop	80. 68.6 0.	0 °F Downstrea psig Downstrea 0 °F Disc Line I 0 psi Disc Line I	m Pressure Desuperheat		233.8 317.0 p 0.0 0.0 0.0	sig Cp/C °F Com psi Mole	ecular Weight Cv pressibility Z ecular Weight	17.38	17.38 1.30 0.98
			COMPRESS	OR					
Position	<u>Bearings</u> Load	l lbf	L10 (hrs)		_		Rotors	Male	
Male Inlet Radial Male Outlet Radial	533 79	75	84220	Rotor Thrust Balance Pisto	n Force			Norma 9841.7 lb 444 µir	f 0.0 lbf
Female Inlet Radial Female Outlet Radial Male Axial	63(121 24	08	31404	Inlet Blocking Outlet Blocking Max Rotor Bo	ng Dia			444 µir 652 µir 1096 µir	924 µin
Female Axial	34		45746	Rotor Shaft F	atigue S		illowable deflect tor	tion 2140 µir 2.46	
		FRI	RORS AND WA	RNINGS				_	

BY JOHNSON CONTROLS			10 - 11 - 17 - 11					
CoolWare v7.1.2		Regis	stered To: Toromor	nt Energy Sy	stems - J			***
Customer Name End User Name Project			Referenc Item	ce Screw (Open	Date 3/12/20 Atmospheric l Elevation		Run # 4 12.90 psi 3577 ft
		COMF	RESSOR - TDS	H 283L				
Compressor Power Speed Percent Suct Vol Flow		Compression Rat Volume Ratio Ideal Volume Rat Discharge Port		2.78	Eff Mode Volumet Adiabati	ric Eff	Hy	drocarbon Mix 79.5% 77.7%
	Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)		me Flow cfm)	(scfm)	Volume I (MN	Flow //SCFD) 16.434
Suction Discharge	80.0 228.4	78.6 317.0	522.7 522.7		865.7 59.8	11412.3 11412.3		16.434
			OIL SYSTEM					
Oil Type Oil Flow Main Inj Oil Flow Bearing Oil Flow Oil Pump Piping	54.4 gg 27.2 gg	OOI Cooler Hea om Main Inj Oil Te om Bearing Oil Te om Oil Cooling Oil Main Inj Valve	emp emp	160 160 <i>A</i>	.0 °F Oil .0 °F Ma .11 Oil Ma	Pump Boost System Pres Drop iin Inj Orifice Dia iin Inj Cv iin Inj Valve Dia		0.0 psi 10.0 psi 0.469 in 5.0 1.00 in
		SYSTEM				F	LŲID	
Upstream Temperature Upstream Pressure Suct Line Superheat Suct Line Pres Drop	78.6 C	0.0 °F Downstrear 0 psig Downstrear 0.0 °F Disc Line D 0.0 psi Disc Line P	esuperheat res Drop		228.4 °F 317.0 psig 0.0 °F 0.0 ps	g Cp/Cv Compressibility Z Molecular Weight	17.38	17.38 1.30 0.98
		Separator F	CORS AND WAR	NINGS	0.0 ps	81		<u>.</u>
n	isclaimer: the information contain				the right to I	inal verification of all rating resu	ılts.	
<u>_</u>								

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Run # 4 Reference Customer Name 12.90 psi Atmospheric Pressure Screw Open Item End User Name Elevation 3577 ft Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix Eff Model Compression Ratio 1460.1 hp Compressor Power Volumetric Eff 79.5% 2.78 Volume Ratio 3550 rpm Speed 77.7% Adiabatic Eff 2.78 86.4% Ideal Volume Ratio Percent Suct Vol Flow Standard Discharge Port Standard Volume Flow Volume Flow Mass Flow Pressure Temperature (MMSCFD) (scfm) (cfm) (lbm/min) (psig) (°F) 16.434 11412.3 1865.7 522.7 80.0 78.6 Suction 11412.3 16.434 659.8 522.7 317.0 Discharge 228.4 **OIL SYSTEM** 0.0 psi Oil Pump Boost 1410.0 kbtu/hr CP-1516-100 Oil Cooler Heat Rej Oil Type 10.0 psi Oil System Pres Drop 160.0 °F Main Inj Oil Temp 81.7 gpm Oil Flow 0.469 in Main Inj Orifice Dia 160.0 °F Bearing Oil Temp 54.4 gpm Main Inj Oil Flow 5.0 All Oil Main Inj Cv Oil Cooling 27.2 gpm Bearing Oil Flow 1.00 in 100.0% Main Inj Valve Dia Main Inj Valve Pos All Oil Oil Pump Piping **FLUID** SYSTEM 17,38 228.4 °F Molecular Weight Downstream Temperature 80.0 °F Upstream Temperature 1.30 317.0 psig Cp/Cv Downstream Pressure 78.6 psig Upstream Pressure 0.98 Compressibility Z 0.0 °F Disc Line Desuperheat 0.0 °F Suct Line Superheat Molecular Weight 17.38 0.0 psi Disc Line Pres Drop 0.0 psi Suct Line Pres Drop 0.0 psi Separator Pres Drop COMPRESSOR Rotors Bearings Female Male L10 (hrs) Load lbf Position Normal Normal Rotor Thrust Direction 63454 5378 Male Inlet Radial 9428.9 lbf 0.0 lbf Balance Piston Force 81951 8040 Male Outlet Radial 452 µin 605 µin Inlet Blocking Dia 51686 6459 Female Inlet Radial 936 µin 661 µin **Outlet Blocking Dia** 30854 12173 Female Outlet Radial 1537 µin Max Rotor Body 1114 µin 78638 2669 Male Axial Max allowable deflection 2140 µin 47919 3382 Female Axial 2.06 Rotor Shaft Fatigue Safety Factor **ERRORS AND WARNINGS**

BY IOHNSON CONTROLS			spen dyston					
CoolWare v7.1.2		Regi	stered To: Toromont	Energy Sy	stems - Jan			
Customer Name End User Name Project	Reference Item Screw Open		Date 3/12/200 Atmospheric P Elevation		Run # 5 12.90 psi 3577 ft			
		COMI	PRESSOR - TDSH	1283L				
Compressor Power Speed Percent Suct Vol Flow		· · · · · · · · · · · · · · · · · · ·	tio	3.25 2.53	Eff Model Volumetric Adiabatic E		Hy 	drocarbon Mix 79.6% 78.3%
	Temperature (°F)	Pressure (psig)	Mass Flow (lbm/min)		me Flow cfm)	Standard (scfm)		(ISCFD)
Suction Discharge	80.0 223.0	88.6 317.0	580.5 580.5		867.8 '26.9	12674.0 12674.0		18.251 18.251
			OIL SYSTEM					
Oil Type Oil Flow Main Inj Oil Flow Bearing Oil Flow Oil Pump Piping	78.9 gş 52.7 gş 26.2 gş	Oil Cooler Heom Main Inj Oil Toom Bearing Oil Tooling Oil Main Inj Valve	emp	160 A	0.0 °F Oil S 0.0 °F Main All Oil Main	ump Boost ystem Pres Drop Inj Orifice Dia Inj Cv Inj Valve Dia		0.0 psi 10.0 psi 0.469 in 5.0 1.00 in
		SYSTEM				FL	UID	
Upstream Temperature Upstream Pressure Suct Line Superheat Suct Line Pres Drop	88.6	0.0 °F Downstrea 6 psig Downstrea 0.0 °F Disc Line D 0.0 psi Disc Line F	Desuperheat		223.0 °F 317.0 psig 0.0 °F 0.0 psi	Molecular Weight Cp/Cv Compressibility Z Molecular Weight	17.38	17.38 1.30 0.98
		Separator		IINGS	0.0 psi			
	Disclaimer the information contain		ORS AND WARN		s the right to fina	al verification of all rating result	s.	

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Run # 5 Reference **Customer Name** 12.90 psi Atmospheric Pressure Screw Open Item End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix 3.25 Eff Model Compression Ratio 1460.1 hp Compressor Power 79.6% Volumetric Eff 2.53 Volume Ratio 3550 rpm Speed 78.3% Adiabatic Eff 2.53 86.4% Ideal Volume Ratio Percent Suct Vol Flow Standard Discharge-Port Standard Volume Flow Volume Flow Mass Flow Pressure Temperature (MMSCFD) (scfm) (cfm) (lbm/min) (psig) (°F) 18.251 12674.0 1867.8 580.5 80.0 88.6 Suction 12674.0 18.251 726.9 580.5 317.0 Discharge 223.0 OIL SYSTEM 0.0 psi Oil Pump Boost 1249.8 kbtu/hr Oil Cooler Heat Rej CP-1516-100 Oil Type -10.0 psi Oil System Pres Drop 160.0 °F Main Inj Oil Temp 78.9 gpm Oil Flow 0.469 in Main Inj Orifice Dia 160.0 °F Bearing Oil Temp 52.7 gpm Main Inj Oil Flow 5.0 All Oil Main Inj Cv 26.2 apm Oil Cooling Bearing Oil Flow 1.00 in 100.0% Main Inj Valve Dia Main Inj Valve Pos All Oil Oil Pump Piping **FLUID SYSTEM** 17.38 223.0 °F Molecular Weight 80.0 °F Downstream Temperature Upstream Temperature 1.30 Cp/Cv 88.6 psig Downstream Pressure 317.0 psig Upstream Pressure 0.98 Compressibility Z Disc Line Desuperheat 0.0 °F 0.0 °F Suct Line Superheat Molecular Weight 17.38 0.0 psi 0.0 psi Disc Line Pres Drop Suct Line Pres Drop 0.0 psi Separator Pres Drop **COMPRESSOR** Rotors Bearings Female Male L10 (hrs) Load lbf Position Normal Normal Rotor Thrust Direction 62122 5412 Male Inlet Radial 0.0 lbf 9016.1 lbf Balance Piston Force 82342 8029 Male Outlet Radial 457 µin 616 µin Inlet Blocking Dia 47824 6611 Female Inlet Radial 944 µin 665 µin Outlet Blocking Dia 30859 12172 Female Outlet Radial 1559 µin Max Rotor Body 1125 µin 2903 61098 Male Axial Max allowable deflection 2140 µin 50366 3326 Female Axial 2.06 Rotor Shaft Fatigue Safety Factor **ERRORS AND WARNINGS**

BY JOHNSON CONTROLS Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Run#6 Reference Customer Name Screw Open Atmospheric Pressure 12.90 psi ltem End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix 2.96 Eff Model Compressor Power 1460.2 hp | Compression Ratio 80.4% 2.33 Volumetric Eff 3550 rpm Volume Ratio Speed 79.0% Adiabatic Eff 2.33 87.0% Ideal Volume Ratio Percent Suct Vol Flow Discharge Port Standard Volume Flow Standard Volume Flow Mass Flow Temperature Pressure (MMSCFD) (cfm) (scfm) (lbm/min) (psig) (°F) 20.243 14057.4 1885.9 98.6 643.9 80.0 Suction 20.243 799.5 14057.4 643.9 Discharge 217.3 317.0 **OIL SYSTEM** 0.0 psi Oil Pump Boost 1089.5 kbtu/hr CP-1516-100 Oil Cooler Heat Rei Oil Type 10.0 psi 160.0 °F Oil System Pres Drop 75.8 gpm Main Inj Oil Temp Oil Flow Main Inj Orifice Dia 0.469 in 160.0 °F Bearing Oil Temp Main Inj Oil Flow 50.6 gpm 5.0 Main Inj Cv Oil Coolina All Oil 25.2 gpm Bearing Oil Flow 1.00 in Main Inj Valve Dia 100.0% All Oil Main Inj Valve Pos Oil Pump Piping **FLUID SYSTEM** 17.38 Molecular Weight 217.3 °F Downstream Temperature Upstream Temperature 80.0 °F 1.30 Cp/Cv 317.0 psig 98.6 psig Downstream Pressure Upstream Pressure 0.98 Compressibility Z 0.0 °F 0.0 °F Disc Line Desuperheat Suct Line Superheat Molecular Weight 17.38 0.0 psi Disc Line Pres Drop 0.0 psi Suct Line Pres Drop 0.0 psi Separator Pres Drop **ERRORS AND WARNINGS** Disclaimer; the information contained in this program is subject to change without notice. Frick reserves the right to final verification of all rating results

Y JOHNSON CONTROLS			spen byse					
CoolWare v7.1.2		Regi	istered To: Torome	ont Energy Sy	stems			
Customer Name End User Name Project			Referei Item				heric Pressure	Run # 6 12.90 psi 3577 ft
		COM	PRESSOR - TD	SH 283L				
Compressor Power	1460.2 hp	Compression Ra	atio		Eff Mod		Hydr	ocarbon Mix
Speed	3550 rpm '	/olume Ratio			Volume			80.4%
Percent Suct Vol Flow	87.0%	deal Volume Ra	itio	2.33	Adiabat	ic Eff		79.0%
		Discharge Port		Standard				
	Temperature	Pressure	Mass Flow	Volu	me Flow	Sta	andard Volume Fl	
	(°F)	(psig)	(lbm/min)		cfm)	(scfm)		CFD)
Suction	80.0	98.6	643.9		885.9	14057		0.243
Discharge	217.3	317.0	643.9	7	799.5	14057	.4 2	0.243
			OIL SYSTEM	ń		<u></u>		
Oil Type	CP-1516-100	Oil Cooler He	at Rej	1089.5 kb	tu/hr Oi	l Pump Boost	-	0.0 ps
Oil Flow		Main Inj Oil T		160	ı.0 °F	I System Pres Dro	ор	10.0 ps
Main Inj Oil Flow		Bearing Oil Te		160	.0 °F M:	ain Inj Orifice Dia		0.469 ii
Bearing Oil Flow	25.2 gpn	Oil Cooling	•			ain Inj Cv		5.0
Oil Pump Piping		I Main Inj Valve	e Pos	10	0.0% M	ain Inj Valve Dia		1.00 ir
	9	YSTEM					FLUID	
Upstream Temperature		1.0.00	m Temperature		217.3°	F Molecular We	eight	17.38
Upstream Pressure		sig Downstrea	•		317.0 ps	ig Cp/Cv		1.30
Suct Line Superheat		°F Disc Line [0.0°			0.98
Suct Line Pres Drop		psi Disc Line F			0.0 p	si Molecular We	eight 17.38	
Oddt Ellie i 163 Diop		Separator			0.0 p	si		
			COMPRESSO)R	<u> </u>		······································	
	Bearings				***	Rotors		
Position	Load	lbf	L10 (hrs)				Mal	e Female
Male Inlet Radial	549			Rotor Thrust	Direction		Norma	ıl Normal
Male Outlet Radial	801			Balance Pisto	n Force		8603.3 lb	
Female Inlet Radial	686		42212	Inlet Blocking	Dia		464 µi	-
Female Outlet Radial	1222		30442	Outlet Blockir	ng Dia		670 µi	•
	315		47529	Max Rotor Bo	ody		1141 µi	•
Male Axiai			50000			Max allowable	deflection 2140 µi	n
Male Axial Female Axial	327	0	52989	Rotor Shaft F			2.4	4 2.05

BY JOHNSON CONTROLS			Op0	.					
CoolWare v7.1.2	· · · · · · · · · · · · · · · · · · ·		Registered To:	Toromont E	nergy Sy	stems - Jar	nes Storoshenko		
Customer Name End User Name Project	Reference Item Screw Open		Date 3/12/20 Atmospheric Elevation		Run # 7 12.90 psi 3577 ft				
			COMPRESSO	R - TDSH	283L				
Compressor Power	1460.2 hr					Eff Model		Hy	drocarbon Mix
Speed	, mar 0.256	Volume Ra			2.20	Volumetrio	: Eff		81.8%
Percent Suct Vol Flow	-	Ideai Volur			2.16	Adiabatic	Eff '		79.9%
		Discharge	Port	;	Standard				
	Temperature (°F)	Pressure (psig)		Flow /min)		me Flow cfm)	Standard (scfm)	Volume I (MN	Flow ISCFD)
Suction	80.0	108.6		4.2	19	919.5	15591.6		22.452
Discharge	211.3	317.0	71	4.2	8	79.0	15591.6		22.452
			OIL S	/STEM			···		
Oil Type	CP-1516-	100 Oil Cool	ler Heat Rej	4.1.	929.1 kb	tu/hr Oil P	ump Boost		0.0 psi
Oil Flow	72.3 g	pm Main Inj	Oil Temp		160	.0 °F Oil S	ystem Pres Drop		10.0 psi
Main Inj Oil Flow	48.2 g	pm Bearing	Oil Temp		160	.0 °F Main	Inj Orifice Dia		0.469 in
Bearing Oil Flow	24.1 g	pm Oil Coo	ling			JI Oil Main	•		5.0
Oil Pump Piping	All	Oil Main Inj	j Valve Pos		100	0.0% Main	Inj Valve Dia		1.00 in
		SYSTEM					F	LUID	
Upstream Temperature	8	0.0 °F Dowr	nstream Tempera	ture		211.3 °F	Molecular Weight		17.38
Upstream Pressure	108.	6 psig Dowi	nstream Pressure	;		317.0 psig	Cp/Cv		1.30
Suct Line Superheat		0.0 °F Disc	Line Desuperhea	t		0.0 °F	Compressibility Z	4-00	0.98
Suct Line Pres Drop		0.0 psi Disc	Line Pres Drop		, .	0.0 psi	Molecular Weight	17.38	
		Sepa	arator Pres Drop			0.0 psi			
	:	<u> </u>	ERRORS AN	n WARNI	NGS				

	Regi	stered To: Toron	ont Fneray Sy	stems - Ja	mes Storoshenko		4
	rtegi	Refere	ence		Date 3/12/200		Run # 7
		Item	Screw (Open	Atmospheric F Elevation		2.90 psi 577 ft
	COM	PRESSOR - TI	OSH 283L				
1460.2 hp	Compression Ra	itio	2.72			Hydro	carbon Mix
3550 rpm	Volume Ratio						81.8%
88.4%		tio	2.16 Standard	Adiabatic	Eff		79.9%
Temperature		Mass Flow	Volu	me Flow	Standard	Volume Flo	w
(°F)	(psig)	(lbm/min)			(scfm)		
80.0	108.6	714.2					2.452
211.3	317.0	714.2	8	379.0	15591.6	22	2.452
		OIL SYSTE	M				
CP-1516-1(0 Oil Cooler He	at Rej	929.1 kb				0.0 psi
· 72.3 ap	m Main Ini Oil Te	emp					10.0 ps
Ų.							0.469 ir
		•	A	∖ll Oil Mair	n Inj Cv		5.0
		Pos	10	0.0% Maii	n Inj Valve Dia		1.00 ir
	SYSTEM		***		FL	.UID	
		m Temperature		211.3 °F	Molecular Weight		17.38
		•		317.0 psig	Cp/Cv		1.30
			"	0.0 °F			0.98
				0.0 psi	Molecular Weight	17.38	
				0.0 psi			
		COMPRESS	OR			<u> </u>	
<u>Bearings</u>		1.40 (han)	1		ROTORS	Male	Female
			Poter Thrust	Direction			
	-		l .				
			· · · ·				
				-			-
		54902	Wax Notor Bu	, u y	Max allowable deflect	•	
					ITION GITCHTON GONDOL		
32	32	34302	Rotor Shaft F	atique Safe	ety Factor	2.45	2.05
	3550 rpm 88.4% Temperature (°F) 80.0 211.3 CP-1516-10 72.3 gp 48.2 gp 24.1 gp All C	Temperature (°F) 80.0 211.3 CP-1516-100 72.3 gpm 48.2 gpm 24.1 gpm All Oil SYSTEM 80.0 °F 108.6 psig 0.0 °F 108.6 psig 0.0 °F 0.0 psi 0 ldeal Volume Ratio Ideal Volume Ideal V	COMPRESSOR - TI	COMPRESSOR - TDSH 283L 1460.2 hp 3550 rpm 88.4% Volume Ratio 2.20 1460.2 hp 3550 rpm 88.4% Volume Ratio 2.20 1460.2 hp 3550 rpm 88.4% Volume Ratio 2.20 1460.2 hp 2.72 2.20 1460.2 hp 3550 rpm 3550 rpm 88.4% Volume Ratio 2.16 1460.2 hp 2.72 2.20 1460.2 hp 3550 rpm 36.4% 36.4% 1460.2 hp 36.4% 36.4% 36.4% 36.4% 1460.2 hp 36.4% 36.4% 36.4% 36.4% 1460.2 hp 36.4% 36.4% 36.4% 36.4% 36.4% 1460.2 hp 36.4% 36.4% 36.4% 36.4% 1460.2 hp 36.4% 36	Reference Item	COMPRESSOR - TDSH 283L	Reference Item Screw Open Date 3/12/2008 Atmospheric Pressure 1

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Run #8 Date 3/12/2008 Reference Customer Name 12.90 psi Atmospheric Pressure Item Screw Open End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix 2.51 Eff Model 1460.1 hp Compression Ratio Compressor Power 83.1% 2.20 Volumetric Eff Volume Ratio 3550 rpm Speed 80.2% Adiabatic Eff 2.02 Ideal Volume Ratio 89.6% Percent Suct Vol Flow Standard Discharge Port Volume Flow Standard Volume Flow Mass Flow Pressure Temperature (MMSCFD) (scfm) (cfm) (lbm/min) (°F) (psig) 24,701 17153.4 1951.2 785.7 118.6 Suction 80.0 17153.4 24.701 958.9 317.0 785.7 205.7 Discharge **OIL SYSTEM** 0.0 psi 782.1 kbtu/hr Oil Pump Boost CP-1516-100 Oil Cooler Heat Rej Oil Type 10.0 psi 160.0 °F Oil System Pres Drop Main Inj Oil Temp 68.5 gpm Oil Flow 0.469 in Main Inj Orifice Dia 160.0 °F Bearing Oil Temp 45.5 gpm Main Ini Oil Flow 5.0 All Oil Main Ini Cv Bearing Oil Flow Oil Cooling 23.0 gpm 1.00 in 100.0% Main Inj Valve Dia Main Inj Valve Pos All Oil Oil Pump Piping **FLUID** SYSTEM 205.7 °F Molecular Weight 17.38 80.0 °F Downstream Temperature Upstream Temperature 1.30 Cp/Cv 118.6 psig Downstream Pressure 317.0 psig Upstream Pressure Compressibility Z 0.98 Disc Line Desuperheat 0.0 °F 0.0 °F Suct Line Superheat Molecular Weight 17.38 0.0 psi 0.0 psi Disc Line Pres Drop Suct Line Pres Drop 0.0 psi Separator Pres Drop **ERRORS AND WARNINGS** Disclaimer: the information contained in this program is subject to change without notice. Frick reserves the right to final verification of all rating results.

Registered To: Toromont Energy Systems - James Storoshenko CoolWare v7.1.2 Date 3/12/2008 Run #8 Reference Customer Name Atmospheric Pressure 12.90 psi Item Screw Open End User Name 3577 ft Elevation Project **COMPRESSOR - TDSH 283L** Hydrocarbon Mix Eff Model 1460.1 hp Compression Ratio Compressor Power 83.1% Volumetric Eff 2.20 3550 rpm Volume Ratio Speed 80.2% Adiabatic Eff 2.02 89.6% Ideal Volume Ratio Percent Suct Vol Flow Standard Discharge Port Mass Flow Volume Flow Standard Volume Flow Temperature Pressure (MMSCFD) (scfm) (lbm/min) (cfm) (psig) 24.701 1951.2 17153.4 785.7 80.0 118.6 Suction 17153.4 24.701 958.9 317.0 785.7 205.7 Discharge OIL SYSTEM 0.0 psi 782.1 kbtu/hr Oil Pump Boost Oil Cooler Heat Rej CP-1516-100 Oil Type Oil System Pres Drop 10.0 psi 160.0 °F Main Inj Oil Temp 68.5 gpm Oil Flow 0.469 in Main Inj Orifice Dia Bearing Oil Temp 160.0 °F 45.5 gpm Main Ini Oil Flow 5.0 All Oil Main Inj Cv Oil Cooling Bearing Oil Flow 23.0 gpm 1.00 in 100.0% Main Inj Valve Dia Main Inj Valve Pos Oil Pump Piping All Oil **FLUID SYSTEM** 205.7 °F Molecular Weight 17.38 80.0 °F Downstream Temperature Upstream Temperature 1.30 Cp/Cv 118.6 psig Downstream Pressure 317.0 psig Upstream Pressure Compressibility Z 0.98 0.0 °F Disc Line Desuperheat 0.0°F Suct Line Superheat Molecular Weight 17.38 Disc Line Pres Drop 0.0 psi 0.0 psi Suct Line Pres Drop 0.0 psi Separator Pres Drop **COMPRESSOR** Rotors Bearings Female Male Load lbf L10 (hrs) Position Normal Normal Rotor Thrust Direction 5671 53157 Male Inlet Radial 0.0 lbf 7777.6 lbf Balance Piston Force 80069 8097 Male Outlet Radial 671 µin Inlet Blocking Dia 481 µin 33122 Female Inlet Radial 7381 Outlet Blocking Dia 686 µin 992 µin 28993 Female Outlet Radial 12402 Max Rotor Body 1180 µin 1673 µin 25757 3871 Male Axial Max allowable deflection 2140 µin 56248 3206 Female Axial 2.02 Rotor Shaft Fatigue Safety Factor **ERRORS AND WARNINGS**